已知是一個等差數(shù)列,且
(Ⅰ)求的通項;  (Ⅱ)求前n項和Sn的最大值.

(1)(2)時,取到最大值

解析試題分析:(Ⅰ)設(shè)的公差為,由已知條件,,解出,.
所以.
(Ⅱ).所以時,取到最大值.
考點:數(shù)列的通項公式和求和的最值
點評:考查了等差數(shù)列的通項公式和前n項和的最值的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,當(dāng)時,總有成立,且
(Ⅰ)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}滿足,且
(1)求證:數(shù)列{}是等差數(shù)列;
(2)求數(shù)列{}的通項公式;
(3)設(shè)數(shù)列{}的前項之和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知等差數(shù)列,),求證:仍為等差數(shù)列;
(2)已知等比數(shù)列),類比上述性質(zhì),寫出一個真命題并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
已知數(shù)列,其中是首項為1,公差為1的等差數(shù)列;是公差為的等差數(shù)列;是公差為的等差數(shù)列().
(Ⅰ)若= 30,求
(Ⅱ)試寫出a30關(guān)于的關(guān)系式,并求a30的取值范圍;
(Ⅲ)續(xù)寫已知數(shù)列,可以使得是公差為3的等差數(shù)列,請你依次類推,把已知數(shù)列推廣為無窮數(shù)列,試寫出關(guān)于的關(guān)系式(N);
(Ⅳ)在(Ⅲ)條件下,且,試用表示此數(shù)列的前100項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項等差數(shù)列的前項和為,且滿足,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
記等差數(shù)列{}的前n項和為,已知,
(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)令,求數(shù)列{}的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列中的、、
(1)求數(shù)列的通項公式; (2)數(shù)列的前n項和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項的和為,且
(1)求數(shù)列,的通項公式;
(2)記,求證:
(3)求數(shù)列的前項和

查看答案和解析>>

同步練習(xí)冊答案