已知數(shù)列中,當(dāng)時,總有成立,且
(Ⅰ)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和

(Ⅰ).(Ⅱ)。

解析試題分析:(Ⅰ)當(dāng)時, ,即,
.∴數(shù)列是以2為首項(xiàng),1為公差的等差數(shù)列.          4分
∴  ,故.                    6分
(Ⅱ)∵,
,
兩式相減得:

                               
考點(diǎn):等差數(shù)列的遞推公式、等差數(shù)列的定義,“錯位相減法”。
點(diǎn)評:典型題,涉及求數(shù)列的通項(xiàng)公式問題,一般地通過布列方程組,求相關(guān)元素。“分組求和法”“裂項(xiàng)相消法”“錯位相減法”是高考?贾R內(nèi)容。本題難度不大。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為Sn,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,記數(shù)列的前項(xiàng)和為.求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為正整數(shù))。
(1) 令,求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2) 令,求使得成立的最小正整數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,,公差為整數(shù),若,
(2)求前項(xiàng)和的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為等差數(shù)列,為數(shù)列的前項(xiàng)和,已知.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{ }滿足 =3,   =  。設(shè),證明數(shù)列{}是等差數(shù)列并求通項(xiàng) 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、是平面直角坐標(biāo)系上的三點(diǎn),且、、成等差數(shù)列,公差為,
(1)若坐標(biāo)為,,點(diǎn)在直線上時,求點(diǎn)的坐標(biāo);
(2)已知圓的方程是,過點(diǎn)的直線交圓于兩點(diǎn),
是圓上另外一點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若、、都在拋物線上,點(diǎn)的橫坐標(biāo)為,求證:線段的垂直平分線與軸的交點(diǎn)為一定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是一個等差數(shù)列,且,
(Ⅰ)求的通項(xiàng);  (Ⅱ)求前n項(xiàng)和Sn的最大值.

查看答案和解析>>

同步練習(xí)冊答案