3.如圖,給出的是求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{30}$的值的一個程序框圖,則判斷框內(nèi)填入的條件是( 。
A.i≥15B.i≤15C.i≥14D.i≤14

分析 由已知中程序的功能是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{30}$的值,根據(jù)已知中的程序框圖,我們易分析出進行循環(huán)體的條件,進而得到答案.

解答 解:模擬程序的運行,可知程序的功能是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{30}$的值,
即n≤30,i≤15時,進入循環(huán),當(dāng)i=16時,退出循環(huán),
則判斷框內(nèi)填入的條件是i≤15.
故選:B.

點評 本題考查的知識點是循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,解答本題的關(guān)鍵是根據(jù)程序的功能判斷出最后一次進入循環(huán)的條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知四棱錐P-ABCD中,底面ABCD是矩形,PD=AB=2AD=2,PC=2$\sqrt{2}$,M,N分別是CD,PB的中點,
(1)求證:MN∥平面PAD;
(2)若E為AD的中點,求三棱錐D-EMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)定義在R上,f′(x)是f(x)的導(dǎo)函數(shù),且f′(x)<$\frac{1}{2}$,f(1)=1,則不等式f(x)<$\frac{x}{2}$+$\frac{1}{2}$的解集為( 。
A.{x|x<-1}B.{x|x>1}C.{x|x<-1或x>1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,圓O的直徑為AB且BE為圓O的切線,點C為圓O上不同于A、B的一點,AD為∠BAC的平分線,且分別與BC交于H,與圓O交于D,與BE交于E,連結(jié)BD、CD.
(Ⅰ)求證:∠DBE=∠DBC;
 (Ⅱ)若HE=4,求ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知實數(shù)a、m滿足a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,(x+a+m)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7,且(a0+a2+a4+a62-(a1+a3+a5+a72=37,則m=( 。
A.-1或3B.1或-3C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=tan(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為2π,則ω=$\frac{1}{2}$;f($\frac{π}{6}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=4x2+$\frac{1}{x}$-a,g(x)=f(x)+b,其中a,b為常數(shù).
(1)若x=1是函數(shù)y=xf(x)的一個極值點,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)有2個零點,f(g(x))有6個零點,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某工廠36名工人的年齡數(shù)據(jù)如表:
工人編號  年齡工人編號  年齡工人編號  年齡工人編號  年齡
1      40
2      44
3      40
4      41
5      33
6      40
7      45
8      42
9      43
10      36
11      31
12      38
13      39
14      43
15      45
16      39
17      38
18      36
19      27
20      43
21      41
22      37
23      34
24      42
25      37
26      44
27      42
28      34
29      39
30      43
31      38
32      42
33      53
34      37
35      49
36      39
(Ⅰ)用系統(tǒng)抽樣法從36名工人中抽取容量為9的樣本,且在第一分段里用隨機抽樣法抽到的年齡數(shù)據(jù)為44,列出樣本的年齡數(shù)據(jù);
(Ⅱ)計算(Ⅰ)中樣本的平均值$\overline{x}$和方差s2
(Ⅲ)求這36名工人中年齡在($\overline{x}$-s,$\overline{x}$+s)內(nèi)的人數(shù)所占的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b是正常數(shù),x,y∈(0,+∞),求證:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{(a+b)}^2}}}{x+y}$.

查看答案和解析>>

同步練習(xí)冊答案