分析 求導(dǎo)數(shù),函數(shù)f(x)在(0,1]上是增函數(shù),f′(x)=2a+$\frac{2}{{x}^{3}}$≥0在(0,1]上恒成立,分離參數(shù)求最值,即可求出實數(shù)a的取值范圍.
解答 解:由題意,∵f(x)=2ax-$\frac{1}{x^2}$,
∴f′(x)=2a+$\frac{2}{{x}^{3}}$,
∵函數(shù)f(x)在(0,1]上是增函數(shù),
∴f′(x)=2a+$\frac{2}{{x}^{3}}$≥0在(0,1]上恒成立,
∴2a≥-$\frac{2}{{x}^{3}}$在(0,1]上恒成立,
∴2a≥-2,
∴a≥-1.
故答案為:a≥-1.
點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,訓練了利用分離參數(shù)法求參數(shù)的取值范圍,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,$\frac{1}{3}$] | B. | (-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)∪{0} | C. | [-3,3] | D. | (-∞,-3]∪[3,+∞)∪{0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1)(2) | B. | (2)(3) | C. | (3)(4) | D. | (1)(4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com