19.已知x2+y2=10,則3x+4y的最大值是5$\sqrt{10}$.

分析 令z=3x+4y,可得直線y=-$\frac{3}{4}$+$\frac{z}{4}$ 在y軸上的截距為$\frac{z}{4}$,當直線和圓x2+y2=10相切時,$\frac{z}{4}$取得最值,z取得最值.根據(jù)直線和圓相切,圓心到直線的距離等于半徑,求出z的值,從而得到z的最大值.

解答 解:令z=3x+4y,即y=-$\frac{3}{4}$+$\frac{z}{4}$,故直線y=-$\frac{3}{4}$+$\frac{z}{4}$ 在y軸上的截距為$\frac{z}{4}$,
故當直線y=-$\frac{3}{4}$+$\frac{z}{4}$ 在y軸上的截距最大時,z最大.
根據(jù)題意可得,當直線和圓x2+y2=10相切時,$\frac{z}{4}$取得最值.
由$\sqrt{10}$=$\frac{|0+0-z|}{5}$ 可得z=±5$\sqrt{10}$,故z的最大值為5$\sqrt{10}$.
故答案為:5$\sqrt{10}$.

點評 本題主要考查簡單的線性規(guī)劃問題,直線和圓相切的性質,點到直線的距離公式的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.(1)log2${\frac{1}{16}}$=-4,
(2)ln$\sqrt{e}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知F1,F(xiàn)2是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個焦點,|F1F2|=2$\sqrt{3}$,離心率為$\frac{{\sqrt{6}}}{2}$,M(x0,y0)是雙曲線C上的一點,若$\overrightarrow{M{F_1}}$•$\overrightarrow{M{F_2}}$<0,則y0的取值范圍是(  )
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{6}})$C.$({-\frac{{2\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}})$D.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.△ABC中,a,b,c分別是角A,B,C所對的邊,已知$\sqrt{3}$b=2asinB,則A=60°或120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)y=2x2-ln(4x)的單調遞增區(qū)間為(  )
A.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)B.(-∞,-$\frac{1}{2}$)和($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+∞)D.(-$\frac{1}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知命題p:2x-1>m對任意的x恒成立;q:f(x)=-x2+2mx+1在(0,+∞)為減函數(shù),則p成立是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.i-2的共軛復數(shù)是(  )
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+2)=f(x-2),且當x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0(a>1)有3個不同的實數(shù)根,則a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點P是橢圓$\frac{x^2}{25}$+$\frac{y^2}{9}$=1上一點,F(xiàn)是橢圓的右焦點,$\overrightarrow{OQ}$=$\frac{1}{2}$(${\overrightarrow{OP}$+$\overrightarrow{OF}}$),|${\overrightarrow{OQ}}$|=4,則點P到拋物線y2=15x的準線的距離為( 。
A.$\frac{15}{4}$B.$\frac{15}{2}$C.15D.10

查看答案和解析>>

同步練習冊答案