11.已知A={x|x<2},B={x|x<m},若B是A的子集,則實數(shù)m的取值范圍為m≤2.

分析 根據(jù)題意,在數(shù)軸上表示集合A,利用集合間的關(guān)系分析可得答案.

解答 解:根據(jù)題意,若B是A的子集,
則必有m≤2;
故答案為:m≤2.

點評 此題考查了交集及其運算,以及集合間的包含關(guān)系,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0,b>0,若$\sqrt{3}$是3a與3b的等比中項,則ab的最大值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某人為增加家庭收入,年初用49萬元購買了一輛貨車用于長途運輸,第一年各種費用支出為6萬元,以后每年都增加2萬元,而每年的運輸收益為25萬元;
(1)求車主前n年的利潤f(n)關(guān)于年數(shù)n的函數(shù)關(guān)系式,并判斷他第幾年開始獲利超過15萬元;(注:利潤=總收入-總成本)
(2)若干年后,車主準(zhǔn)備處理這輛貨車,有兩種方案:
方案一:利潤f(n)最多時,以4萬元出售這輛車;
方案二:年平均利潤最大時,以13萬元出售這輛車;
請你利用所學(xué)知識幫他做出決策.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等差數(shù)列{an}中,a1+a3=10,d=3.令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Tn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=1n(x+a)+$\frac{{x}^{2}}{2(x+a)}$,且曲線y=f(x)在點(0,f(0))處的切線垂直直線x+y+1=0.
(1)求a的值及f(x)的極值;
(2)證明:當(dāng)x>0時,f(x)<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}首項是1公差不為0,Sn為的前n和,且S22=S1•S4
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為( 。
A.1B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=$\frac{1-i}{1+i}$,則z的虛部是( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若m∈(0,1),a=3m,b=log3m,c=m3則用“>”將a,b,c按從大到小可排列為a>c>b.

查看答案和解析>>

同步練習(xí)冊答案