7.如圖,P為⊙O外的一點,直線PO與⊙O于A、B兩點,C為⊙O上一點,CD⊥PO交PO于D,CA平分∠PCD.
(1)證明:PC是⊙O的切線;
(2)若⊙O的直徑為4,BC=3AC,求PC的長.

分析 (1)利用圓的切線的判斷方法,證明∠PCO=90°,即可證明:PC是⊙O的切線;
(2)若⊙O的直徑為4,BC=3AC,由△PAC∽△PCB求PC的長.

解答 證明:(1)連接OC,
∵AB為圓的直徑,
⊥AC⊥CB,
∵CD⊥PO,
∴∠ACD=∠CBA,
∵CA平分∠PCD,
∴∠ACD=∠PCA,
∴∠PCA=∠CBA,
∵∠CBA=∠OCB,
∴∠PCA=∠OCB,
∵∠ACB=∠ACO+∠OCB=90°,
∴∠PCO=∠PCA+∠ACO=90°,
∴PC是⊙O的切線;
解:(2)由△PAC∽△PCB得$\frac{PC}{PB}$=$\frac{PA}{PC}$=$\frac{CA}{BC}$=$\frac{1}{3}$,
∴PC=$\frac{1}{3}$PB=$\frac{1}{3}$(PA+4),
∵PA=$\frac{1}{3}$PC,
∴PC=$\frac{3}{2}$.

點評 本題考查圓的切線的證明,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,橢圓Γ上一動點M到其右焦點F(c,0)(c>0)的最小距離為2-$\sqrt{3}$.
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖所示,設(shè)點B是橢圓Γ的上頂點,點P,Q是橢圓Γ上異于點B的任意兩點,且BP⊥BQ,線段PQ的中垂線l與x軸的交點為(x0,0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,正四棱柱ABCD-A1B1C1D1的底面邊長為1,DD1=2,E為DD1的中點,連結(jié)C1E,CE,AC,AE,AC1,B1E.
(1)求證:B1E⊥AC;
(2)求點C1到平面AEC的距離;
(3)求二面角C1-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知不等式組$\left\{\begin{array}{l}y≤-x+2\\ y≥kx+1\\ x≥0\end{array}\right.$所表示的平面區(qū)域為面積等于1的三角形,則實數(shù)k的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}$(t為參數(shù)),當(dāng)t=1時,曲線C1上的點為A,當(dāng)t=-1時,曲線C1上的點為B.以原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=$\frac{6}{\sqrt{4+5sin^2θ}}$.
(1)求A、B的極坐標(biāo);
(2)設(shè)M是曲線C2上的動點,求|MA|2+|MB|2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,曲線C:$\left\{\begin{array}{l}{x=\sqrt{6}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).以原點O為極點,x軸正半軸為極軸,建立坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+$\sqrt{3}$sinθ)+4=0,求曲線C上的點到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=x-asinx,x∈[0,$\frac{π}{2}$].
(Ⅰ)當(dāng)a=2時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≤cosx,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{2e}^{x}}{1{+x}^{2}}$(e為自然對數(shù)的底數(shù)),若m>4(ln2-1).求證:當(dāng)x>0時,f(x)>$\frac{{2x}^{2}-mx+2}{1{+x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=4sinθ.從極點作圓C的弦,記各條弦中點的軌跡為曲線C1
(1)求C1的極坐標(biāo)方程;
(2)已知曲線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$,(0≤α<π,t為參數(shù),且t≠0),l與C交于點A,l與C1交于點B,且|$\overrightarrow{AB}$|=$\sqrt{3}$,求α的值.

查看答案和解析>>

同步練習(xí)冊答案