分析 (1)利用圓的切線的判斷方法,證明∠PCO=90°,即可證明:PC是⊙O的切線;
(2)若⊙O的直徑為4,BC=3AC,由△PAC∽△PCB求PC的長.
解答 證明:(1)連接OC,
∵AB為圓的直徑,
⊥AC⊥CB,
∵CD⊥PO,
∴∠ACD=∠CBA,
∵CA平分∠PCD,
∴∠ACD=∠PCA,
∴∠PCA=∠CBA,
∵∠CBA=∠OCB,
∴∠PCA=∠OCB,
∵∠ACB=∠ACO+∠OCB=90°,
∴∠PCO=∠PCA+∠ACO=90°,
∴PC是⊙O的切線;
解:(2)由△PAC∽△PCB得$\frac{PC}{PB}$=$\frac{PA}{PC}$=$\frac{CA}{BC}$=$\frac{1}{3}$,
∴PC=$\frac{1}{3}$PB=$\frac{1}{3}$(PA+4),
∵PA=$\frac{1}{3}$PC,
∴PC=$\frac{3}{2}$.
點評 本題考查圓的切線的證明,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com