【題目】如圖,四邊形是平行四邊形, 平面, ,

, 的中點(diǎn).

(1)求證: 平面;

(2)求證:平面平面;

(3)求多面體的體積.

【答案】(1)見解析(2)見解析(3)

【解析】試題分析:1的中點(diǎn),連接,則,所以平面;(2)由題證平面,所以平面平面;(3)分割求體積,得多面體的體積為.

試題解析:

(1)證明:如圖,取的中點(diǎn),連接.

中,∵的中點(diǎn),∴.

又∵,∴

即四邊形是平行四邊形,∴.

平面, 平面,

平面.

(2)證明:在中,

中點(diǎn),連,∵,∴

,∴,∴,∴,

平面, 平面,∴.

,∴平面.

又∵平面,∴平面平面.

(3)解:連,并延長交,連,

分別為中點(diǎn),∴,∴中點(diǎn)

,∴多面體為三梭柱,

體積為,且四邊形為平行四邊形.

平面,∴平面

四棱錐的體積為,

∴多面體的體積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算:電費(fèi)每月用電不超過100度時(shí),按每度0.57元計(jì)算;每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.

(Ⅰ)設(shè)月用電度時(shí),應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:

月份

一月

二月

三月

合計(jì)

交費(fèi)金額

76元

63元

45.6元

184.6元

問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市春節(jié)7家超市的廣告費(fèi)支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,

超市

A

B

C

D

E

F

G

廣告費(fèi)支出x

1

2

4

6

11

13

19

銷售額y

19

32

40

44

52

53

54


(1)請根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程; = x+
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程: =﹣0.17x2+5x+20. 經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個(gè)回歸模型更合適.并用此模型預(yù)測A超市廣告費(fèi)支出為3萬元時(shí)的銷售額,
參考數(shù)據(jù)及公式: =8, =42. xiyi=2794, x =708,
= = = x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在各項(xiàng)為正的數(shù)列{an}中,數(shù)列的前n項(xiàng)和Sn滿足Sn= (an+ ),
(1)求a1 , a2 , a3;
(2)由(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì)如果常數(shù),那么該函數(shù)上是減函數(shù),上是增函數(shù)

(1)用函數(shù)單調(diào)性定義來證明上的單調(diào)性;

(2)已知 ,求函數(shù)的值域;

(3)對(duì)于(2)中的函數(shù)和函數(shù)若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ (a,b∈R)的圖象過點(diǎn)P(1,f(1)),且在點(diǎn)P處的切線方程為y=3x﹣8.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿足f(x﹣2)=f(x+2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=3x﹣1,則f(9)=(
A.﹣2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(Ⅰ)當(dāng)時(shí),若關(guān)于的方程有且只有兩個(gè)不同的實(shí)根求實(shí)數(shù)的取值范圍;

(Ⅱ)對(duì)任意時(shí)不等式恒成立,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的 城市和交通擁堵嚴(yán)重的 城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖(如圖所示):

若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成此 列聯(lián)表,并據(jù)此樣本分析是否有 的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān):

合計(jì)

認(rèn)可

不認(rèn)可

合計(jì)

附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案