分析 畫出球的內(nèi)接直三棱ABC-A1B1C1,作出球的半徑,然后可求球的表面積.
解答 解:直三棱ABC-A1B1C1的各頂點(diǎn)都在同一球面上,
若AB=3,AC=2,∠BAC=60°,
則BC=$\sqrt{9+4-2×3×2×\frac{1}{2}}$=$\sqrt{7}$,
如圖,連接上下底面外心,O為PQ的中點(diǎn),OP⊥平面ABC,
則球的半徑為OA,
由題意,AP=$\frac{1}{2}×\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$=$\sqrt{\frac{7}{3}}$,OP=$\frac{\sqrt{6}}{3}$,
∴OA=$\sqrt{\frac{7}{3}+\frac{6}{9}}$=$\sqrt{3}$,
所以球的表面積為:4πR2=12π.
故答案為:12π.
點(diǎn)評 本題考查球的體積和表面積,球的內(nèi)接體問題,考查學(xué)生空間想象能力理解失誤能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={(\frac{1}{2})^{|x|}}$ | B. | y=x2+2|x| | C. | y=|lnx| | D. | y=2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=b<c | B. | a=b>c | C. | a<b<c | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1 | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{15}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com