已知函數(shù)
(Ⅰ) 求的單調(diào)區(qū)間;
(Ⅱ) 求所有的實(shí)數(shù),使得不等式對(duì)恒成立.

(Ⅰ)當(dāng)a≤0時(shí), f(x)的增區(qū)間是(-∞,+∞);當(dāng)a>0時(shí),f(x)的增區(qū)間是(-∞,-]、[,+∞),f(x)的減區(qū)間是[-];(Ⅱ)

解析試題分析:(Ⅰ)本小題首先求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)求解原函數(shù)的單調(diào)區(qū)間,注意參數(shù)的范圍,通過(guò)分情況討論可以分別得出函數(shù)的增減區(qū)間;(Ⅱ)根據(jù)第一問可知函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可以求得函數(shù)在區(qū)間上的的最大值和最小值,然后讓,即可解得參數(shù)的取值范圍.
試題解析:(Ⅰ)  f′(x)=3x2-3a.
當(dāng)a≤0時(shí),f′(x)≥0恒成立,故f(x)的增區(qū)間是(-∞,+∞).
當(dāng)a>0時(shí),由f′(x)>0,得    x<- 或 x>,
故f(x)的增區(qū)間是(-∞,-]和[,+∞),f(x)的減區(qū)間是[-,].    7分
(Ⅱ) 當(dāng)a≤0時(shí),由(Ⅰ)知f(x)在[0,]上遞增,且f(0)=1,此時(shí)無(wú)解.
當(dāng)0<a<3時(shí),由(Ⅰ)知f(x)在[0,]上遞減,在[]上遞增,
所以f(x)在[0,]上的最小值為f()=1-2a
所以

所以a=1.
當(dāng)a≥3時(shí),由(Ⅰ)知f(x)在[0,]上遞減,又f(0)=1,所以
f()=3-3a+1≥-1,
解得a≤1+,此時(shí)無(wú)解.
綜上,所求的實(shí)數(shù)a=1.    15分
考點(diǎn):1.導(dǎo)數(shù)判斷單調(diào)性;2.解不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)當(dāng)時(shí),求處的切線方程;
(2)若內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)求的單調(diào)區(qū)間及最大值;
(2)恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)的最小值為,求的值.(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(I)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(II)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某自來(lái)水公司要在公路兩側(cè)鋪設(shè)水管,公路為東西方向,在路北側(cè)沿直線鋪設(shè)線路l1,在路南側(cè)沿直線鋪設(shè)線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1與l2接通.已知AB = 60m,BC = 80m,公路兩側(cè)鋪設(shè)水管的費(fèi)用為每米1萬(wàn)元,穿過(guò)公路的EF部分鋪設(shè)水管的費(fèi)用為每米2萬(wàn)元,設(shè)∠EFB= α,矩形區(qū)域內(nèi)的鋪設(shè)水管的總費(fèi)用為W.

(1)求W關(guān)于α的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若處取得極大值,求實(shí)數(shù)的值;
(2)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng),時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)設(shè),,,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè),若對(duì)任意,均有,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案