【題目】設(shè)雙曲線 的左右焦點分別為,過的直線分別交雙曲線左右兩支于點M,N.若以MN為直徑的圓經(jīng)過點且,則雙曲線的離心率為( )
A.B.C.D.
【答案】C
【解析】
由題意可得△MNF2為等腰直角三角形,設(shè)|MF2|=|NF2|=m,則|MN|m,運用雙曲線的定義,求得|MN|=4a,可得m,再由勾股定理可得a,c的關(guān)系,即可得到所求離心率.
若以MN為直徑的圓經(jīng)過右焦點F2,
則,又|MF2|=|NF2|,
可得△MNF2為等腰直角三角形,
設(shè)|MF2|=|NF2|=m,則|MN|m,
由|MF2|﹣|MF1|=2a,|NF1|﹣|NF2|=2a,
兩式相加可得|NF1|﹣|MF1|=|MN|=4a,
即有m=2a,
在直角三角形HF1F2中可得
4c2=4a2+(2a+2a﹣2a)2,
化為c2=3a2,
即e.
故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,
(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某小區(qū)中有條長為50米,寬為6.5米的道路ABCD,在路的一側(cè)可以停放汽車,已知小型汽車的停車位是一個2.5米寬,5米長的矩形,如GHPQ,這樣該段道路可以劃岀10個車位,隨著小區(qū)居民汽車擁有量的增加,停車難成為普遍現(xiàn)象.經(jīng)過各方協(xié)商,小區(qū)物業(yè)擬壓縮綠化,拓寬道路,改變車位方向增加停車位,如圖2,改建后的通行寬度保持不變,即G到AD的距離不變.
(1)綠化被壓縮的寬度BE與停車位的角度∠HPE有關(guān),記為停車方便,要求,寫出關(guān)于的函數(shù)表達(dá)式;
(2)沿用(1)的條件和記號,實際施工時,BE=3米,問改造后的停車位增加了多少個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)討論的單調(diào)性;
(3)設(shè)、為曲線上的任意兩點,并且,若恒成立,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD為邊長等于的正方形,PA⊥平面ABCD,QC∥PA,且異面直線QD與PA所成的角為30°,則四棱錐Q-ABCD外接球的表面積等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1) 若,求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一,為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村扶貧,此幫扶單位為了解該村貧困戶對其所提供幫扶的滿意度,隨機調(diào)查了40個貧困戶,得到貧困戶的滿意度評分如下:
貧困戶 編號 | 評分 | 貧困戶 編號 | 評分 | 貧困戶 編號 | 評分 | 貧困戶 編號 | 評分 | |||
1 | 78 | 11 | 88 | 21 | 79 | 31 | 93 | |||
2 | 73 | 12 | 86 | 22 | 83 | 32 | 78 | |||
3 | 81 | 13 | 95 | 23 | 72 | 33 | 75 | |||
4 | 92 | 14 | 76 | 24 | 74 | 34 | 81 | |||
5 | 86 | 15 | 80 | 25 | 93 | 35 | 89 | |||
6 | 85 | 16 | 78 | 26 | 66 | 36 | 77 | |||
7 | 79 | 17 | 88 | 27 | 80 | 37 | 81 | |||
8 | 84 | 18 | 82 | 28 | 83 | 38 | 76 | |||
9 | 63 | 19 | 76 | 29 | 74 | 39 | 85 | |||
10 | 85 | 20 | 87 | 30 | 82 | 40 | 78 |
用系統(tǒng)抽樣法從40名貧困戶中抽取容量為8的樣本,且在第一分段里隨機抽到的評分?jǐn)?shù)據(jù)為86.
(1)請你列出抽到的8個樣本的評分?jǐn)?shù)據(jù);
(2)計算所抽到的8個樣本的均值和方差;
(3)在(2)條件下,若貧困戶的滿意度評分在之間,則滿意度等級為“A級”.運用樣本估計總體的思想,現(xiàn)從(1)中抽到的8個樣本的滿意度為“A級”貧困戶中隨機地抽取2戶,求所抽到2戶的滿意度評分均“超過85”的概率.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,.
(1)若,寫出所有可能的值;
(2)若數(shù)列是遞增數(shù)列,且、、成等差數(shù)列,求p的值;
(3)若,且是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生假期參與志愿服務(wù)活動的情況,隨機調(diào)查了名男生,名女生,得到他們一周參與志愿服務(wù)活動時間的統(tǒng)計數(shù)據(jù)如右表(單位:人):
超過小時 | 不超過小時 | |
男 | ||
女 |
(1)能否有的把握認(rèn)為該校學(xué)生一周參與志愿服務(wù)活動時間是否超過小時與性別有關(guān)?
(2)以這名學(xué)生參與志愿服務(wù)活動時間超過小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機抽查名學(xué)生,試估計這名學(xué)生中一周參與志愿服務(wù)活動時間超過小時的人數(shù).
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com