【題目】如圖,已知三棱柱ABC﹣A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點,N在線段AB上,且AN=2NB,點P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1;
(2)當 為何值時,有PN∥平面BMC1?
【答案】
(1)解:連接B1C,與BC1交于O,連接MO,則MO⊥BC1,
取BC中點Q,連接AQ,OQ,則AQ∥MO,
∵CC1⊥AQ,∴CC1⊥MO,
∵BC1∩CC1=C1,∴MO⊥平面BCC1B1,
∵MO平面BMC1,
∴平面BMC1⊥平面BCC1B1;
(2)解:取AE=2EM,則NE∥BM,
∵NE平面BMC1,BM平面BMC1,
∴NE∥平面BMC1,
= 時,EM∥PC1,四邊形EMPC1是平行四邊形,∴MC1∥EP,∴EP∥平面BMC1,
∵NE∩EP=E,∴平面NEP∥∥平面BMC1,
∴PN∥平面BMC1.
【解析】(1)連接B1C,與BC1交于O,連接MO,則MO⊥BC1 , 取BC中點Q,連接AQ,OQ,則AQ∥MO,證明:MO⊥平面BCC1B1 , 即可證明平面BMC1⊥平面BCC1B1;(2)取AE=2EM,則NE∥BM, = 時,EM∥PC1 , 四邊形EMPC1是平行四邊形,即可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對平面與平面垂直的判定的理解,了解一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=﹣f(x),當x∈[0,1]時,f(x)=2x﹣1,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是偶函數(shù),當x>0時,;當x∈[﹣3,﹣1]時,記f(x)的最大值為m,最小值為n,則m﹣n=________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】司機在開機動車時使用手機是違法行為,會存在嚴重的安全隱患,危及自己和他人的生命.為了研究司機開車時使用手機的情況,交警部門調(diào)查了100名機動車司機,得到以下統(tǒng)計:在55名男性司機中,開車時使用手機的有40人,開車時不使用手機的有15人;在45名女性司機中,開車時使用手機的有20人,開車時不使用手機的有25人.
(Ⅰ)完成下面的2×2列聯(lián)表,并判斷是否有99.5%的把握認為開車時使用手機與司機的性別有關(guān);
開車時使用手機 | 開車時不使用手機 | 合計 | |
男性司機人數(shù) | |||
女性司機人數(shù) | |||
合計 |
(Ⅱ)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數(shù)為X,若每次抽檢的結(jié)果都相互獨立,求X的分布列和數(shù)學(xué)期望E(X).
參考公式與數(shù)據(jù): ,其中n=a+b+c+d.
P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國古代數(shù)學(xué)名著《九章算術(shù)》中將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱之為塹堵,如圖,在塹堵ABC﹣A1B1C1中,AB=BC,AA1>AB,塹堵的頂點C1到直線A1C的距離為m,C1到平面A1BC的距離為n,則 的取值范圍是( )
A.(1, )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,輯錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是( )
A.2017×22016
B.2018×22015
C.2017×22015
D.2018×22016
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2alnx+x2﹣(a+4)x+1(a為常數(shù))
(1)若a>0,討論f(x)的單調(diào)性;
(2)若對任意的 a∈(1, ),都存在 x0∈(3,4]使得不等式f(x0)+ln a+1>m(a﹣a2)+2a ln 成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中:①兩個函數(shù)的對應(yīng)法則和值域相同,則這兩個是同一個函數(shù);②在上單調(diào)遞增,③若函數(shù)的定義域為,則函數(shù)的定義域為;④若函數(shù)在其定義域內(nèi)不是單調(diào)函數(shù),則不存在反函數(shù);⑤函數(shù)的最小值為4;⑥若關(guān)于的不等式在區(qū)間內(nèi)恒成立,則實數(shù)m的范圍是其中真命題的序號有_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當a=1時,判斷f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上為單調(diào)增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com