4.函數(shù)f(x)=2x2+3x+1的零點(diǎn)是( 。
A.-$\frac{1}{2}$,-1B.$\frac{1}{2}$,1C.$\frac{1}{2}$,-1D.-$\frac{1}{2}$,1

分析 直接利用方程求解即可得到函數(shù)的零點(diǎn).

解答 解:函數(shù)f(x)=2x2+3x+1的零點(diǎn),可得2x2+3x+1=0,解得x=-$\frac{1}{2}$或x=-1.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=mxln(x+1)+x+1,m∈R.
(Ⅰ)若直線l與曲線y=f(x)恒相切于同一定點(diǎn),求l的方程;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≤ex,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x|+|x-$\frac{1}{2}$|,A為不等式f(x)<x+$\frac{1}{2}$的解集.
(1)求A;
(2)當(dāng)a∈A時(shí),試比較|log2(1-a)|與|log2(1+a)|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\overrightarrow{a}$=(3,1),$\overrightarrow$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)λ的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知定義在R上的偶函數(shù)f(x)滿足:當(dāng)x∈[0,+∞)時(shí),$f(x)=\left\{{\begin{array}{l}{2-x,x≥2}\\{{x^2}+1,0≤x<2}\end{array}}\right.$,則f[f(-2)]的值為( 。
A.1B.3C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,Q是棱CC1上的動(dòng)點(diǎn),則當(dāng)BQ+D1Q的長(zhǎng)度取得最小值時(shí),直線B1Q和直線BD所成的角的正切值是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈($\frac{π}{4}$,$\frac{π}{2}$),f(sinθ)>f(cosθ).
②若銳角α、β滿足cosα>sinβ,則α+β<$\frac{π}{2}$.
③函數(shù)f(x)=2sin($\frac{π}{3}$-2x)+1的單調(diào)增區(qū)間為$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],k∈Z$
④cos(x+$\frac{π}{6}$)≥-$\frac{\sqrt{3}}{2}$的解集為{x|$\frac{5π}{6}$+2kπ≤x≤$\frac{7π}{6}$+2kπ,k∈Z}
其中真命題的個(gè)數(shù)有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\\{y≥1}\end{array}\right.$,則z=2x-y的取值范圍為[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知不等式ax2-3x+2>0
(1)若a=-2,求上述不等式的解集;
(2)若上述不等式的解集為{x|x<1或x>b},求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案