9.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,Q是棱CC1上的動(dòng)點(diǎn),則當(dāng)BQ+D1Q的長(zhǎng)度取得最小值時(shí),直線B1Q和直線BD所成的角的正切值是$\frac{\sqrt{5}}{2}$.

分析 當(dāng)BQ+D1Q的長(zhǎng)度取得最小值時(shí)Q是CC1的中點(diǎn),以D1為原點(diǎn),D1A1為x軸,D1C1為y軸,D1D為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線B1Q和直線BD所成的角的正切值.

解答 解:設(shè)AB=BC=$\sqrt{2}$AA1=$\sqrt{2}$,
把B1C1CB展開與D1C1CD成一個(gè)長(zhǎng)方形D1B1BD時(shí),
連結(jié)D1B,交CC1于Q時(shí),當(dāng)BQ+D1Q的長(zhǎng)度取得最小值,
此時(shí)Q是CC1的中點(diǎn),
以D1為原點(diǎn),D1A1為x軸,D1C1為y軸,D1D為z軸,建立空間直角坐標(biāo)系,
則B1($\sqrt{2},\sqrt{2},0$),Q(0,$\sqrt{2}$,$\frac{1}{2}$),B($\sqrt{2},\sqrt{2}$,1),D(0,0,1),
$\overrightarrow{{B}_{1}Q}$=(-$\sqrt{2}$,0,$\frac{1}{2}$),$\overrightarrow{BD}$=(-$\sqrt{2}$,-$\sqrt{2}$,0),
設(shè)直線B1Q和直線BD所成角為θ,
則cosθ=$\frac{|\overrightarrow{{B}_{1}Q}•\overrightarrow{BD}|}{|\overrightarrow{{B}_{1}Q}|•|\overrightarrow{BD}|}$=$\frac{2}{\sqrt{\frac{9}{4}}•\sqrt{4}}$=$\frac{2}{3}$,
tanθ=$\frac{\sqrt{5}}{2}$.
故答案為:$\frac{\sqrt{5}}{2}$.

點(diǎn)評(píng) 本題考查線線角的正切值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方形ADMN與矩形ABCD所在的平面相互垂直,AB=2AD=6,點(diǎn)E為線段AB上一點(diǎn).

(1)若點(diǎn)E是AB的中點(diǎn),求證:BM∥平面NDE;
(2)若二面角D-CE-M的大小為$\frac{π}{6}$,求出AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線x+y-1=0的傾斜角等于( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xlnx(e為無理數(shù),e≈2.718)
(1)求函數(shù)f(x)在點(diǎn)(e,f(e))處的切線方程;
(2)設(shè)實(shí)數(shù)$a>\frac{1}{2e}$,求函數(shù)f(x)在[a,2a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=2x2+3x+1的零點(diǎn)是( 。
A.-$\frac{1}{2}$,-1B.$\frac{1}{2}$,1C.$\frac{1}{2}$,-1D.-$\frac{1}{2}$,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R),
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間
(2)若f(x)在$(0\;,\;\frac{1}{2})$上無零點(diǎn),求a的最小值
(3)若?x0∈(0,e],?x1≠x2∈(0,e],使得f(xi)=g(x0)成立(i=1,2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在△ABC中,點(diǎn)D在BC邊上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$.
(Ⅰ)求sin∠C的值;
(Ⅱ)若BD=2DC,求邊AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.M公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績(jī)?cè)?80分以上者到“甲部門”工作;180分以下者到“乙部門”工作.
(1)求男生成績(jī)的中位數(shù)及女生成績(jī)的平均值;
(2)如果用分層抽樣的方法從“甲部門”人選和“乙部門”人選中共選取5人,再從這5人中選2人,那么至少有一人是“甲部門”人選的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知$\sqrt{2\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,…,若$\sqrt{6\frac{a}{t}}=6\sqrt{\frac{a}{t}}$(a、t∈R*),則a=6,t=35.

查看答案和解析>>

同步練習(xí)冊(cè)答案