分析 (1)根據(jù)奇函數(shù)的性質(zhì)可得f(0)=0,由此求得k值;
(2)由f(x)=ax-a-x(a>0且a≠1),f(1)<0,求得1>a>0,f(x)在R上單調(diào)遞減,不等式化為f(x2+tx)<f(x-4),即x2+(t-1)x+4>0 恒成立,由△<0求得t的取值范圍.
解答 解:(1)∵f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,
∴1-(k-1)=0,∴k=2.
當(dāng)k=2時(shí),f(x)=ax-a-x(a>0且a≠1),∴f(-x)=-f(x)成立
∴f(x)是定義域?yàn)镽的奇函數(shù);
(2)函數(shù)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a-$\frac{1}{a}$<0,
∵a>0,∴1>a>0.
由于y=ax單調(diào)遞減,y=a-x單調(diào)遞增,故f(x)在R上單調(diào)遞減.
不等式f(x2+tx)+f(4-x)<0,可化為f(x2+tx)<f(x-4).
∴x2+tx>x-4,即x2+(t-1)x+4>0 恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
點(diǎn)評(píng) 本題考查指數(shù)型復(fù)合函數(shù)的性質(zhì)以及應(yīng)用,考查函數(shù)的奇偶性的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 任何一個(gè)算法一定含有順序結(jié)構(gòu) | |
B. | 一個(gè)算法可能同時(shí)含有順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu) | |
C. | 循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu) | |
D. | 條件結(jié)構(gòu)中一定包含循環(huán)結(jié)構(gòu) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2e-1 | B. | 2e+1 | C. | 2e+2 | D. | 2e-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 6 | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com