11.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k的值;
(2)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0對(duì)于任意x∈R恒成立的T的取值范圍.

分析 (1)根據(jù)奇函數(shù)的性質(zhì)可得f(0)=0,由此求得k值;
(2)由f(x)=ax-a-x(a>0且a≠1),f(1)<0,求得1>a>0,f(x)在R上單調(diào)遞減,不等式化為f(x2+tx)<f(x-4),即x2+(t-1)x+4>0 恒成立,由△<0求得t的取值范圍.

解答 解:(1)∵f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,
∴1-(k-1)=0,∴k=2.
當(dāng)k=2時(shí),f(x)=ax-a-x(a>0且a≠1),∴f(-x)=-f(x)成立
∴f(x)是定義域?yàn)镽的奇函數(shù);
(2)函數(shù)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a-$\frac{1}{a}$<0,
∵a>0,∴1>a>0.
由于y=ax單調(diào)遞減,y=a-x單調(diào)遞增,故f(x)在R上單調(diào)遞減.
不等式f(x2+tx)+f(4-x)<0,可化為f(x2+tx)<f(x-4).
∴x2+tx>x-4,即x2+(t-1)x+4>0 恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.

點(diǎn)評(píng) 本題考查指數(shù)型復(fù)合函數(shù)的性質(zhì)以及應(yīng)用,考查函數(shù)的奇偶性的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.當(dāng)x∈(0,1)時(shí),函數(shù)f(x)=ex-1的圖象不在函數(shù)g(x)=x2-ax的下方,則實(shí)數(shù)a的取值范圍是[2-e,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法不正確的是(  )
A.任何一個(gè)算法一定含有順序結(jié)構(gòu)
B.一個(gè)算法可能同時(shí)含有順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
C.循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)
D.條件結(jié)構(gòu)中一定包含循環(huán)結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距為2,離心率為$\frac{{\sqrt{2}}}{2}$,y軸上一點(diǎn)Q的坐標(biāo)為(0,3).
(Ⅰ)求該橢圓的方程;
(Ⅱ)若對(duì)于直線l:y=x+m,橢圓C上總存在不同的兩點(diǎn)A與B關(guān)于直線l對(duì)稱,且3$\overline{QA}$•$\overline{QB}$<32,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列五種說法:
①函數(shù)$y={x^{\frac{1}{2}}}$與函數(shù)$y={(\frac{1}{2})^x}$的值域相同;
②若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
③函數(shù)y=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$與$y=\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$均為奇函數(shù);
④若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=2016;
⑤已知f(x)=kx,g(x)=(k2-2)x2-2kx,若f(x),g(x)至少有一個(gè)在(1,+∞)上單調(diào)遞增,則實(shí)數(shù)k的取值范圍是$[-\sqrt{3},-\sqrt{2})∪(0,+∞)$.
其中錯(cuò)誤說法的序號(hào)是①②⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$y={e^x},y=\frac{e}{x}$與x軸,y軸,x=e所圍成的圖形的面積為( 。
A.2e-1B.2e+1C.2e+2D.2e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=sinωx+cosωx-1(ω>0),將y=f(x)的圖象向左平移$\frac{π}{3}$個(gè)長(zhǎng)度單位后,所得的圖象與原圖象重合,則ω的最小值等于( 。
A.9B.6C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,若橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{{m}^{2}+4}$=1的離心率為$\frac{\sqrt{3}}{2}$,則m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$,(x∈R)是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)求證:函數(shù)f(x)在R上是單調(diào)遞增函數(shù);
(3)求使f(1-m)+f(1-2m)<0成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案