16.函數(shù)f(x)=x2-ax-3在區(qū)間(-∞,4]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是a≥8.

分析 根據(jù)二次函數(shù)的性質(zhì)可判斷只需對(duì)稱軸在4的右側(cè)即可.

解答 解:函數(shù)f(x)=x2-ax-3在區(qū)間(-∞,4]上單調(diào)遞減,
∴對(duì)稱軸x=$\frac{a}{2}$≥4,
∴a≥8,
故答案為:a≥8.

點(diǎn)評(píng) 考查了二次函數(shù)的性質(zhì),屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解方程x2+$\frac{{x}^{2}}{(x+1)^{2}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f (x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π) 在x=π處取最小值.
(1)求φ的值;
(2)若f(2x+$\frac{π}{3}$)=m在[0,π]有兩個(gè)解x1,x2,求m的取值范圍,并求相應(yīng)的x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=f(x)的圖象如圖所示,則下列數(shù)值排序正確的是( 。
A.f′(1)<f′(2)<f(2)-f(1)B.f′(2)<f′(1)<f(2)-f(1)C.f′(2)<f(2)-f(1)<f′(1)D.f(2)-f(1)<f′(1)<f′(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}a{x^2}$-2x,其中a≤0
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+b,求a-2b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x-alnx+$\frac{1+a}{x}$.
(Ⅰ)若a=1,求f(x)在x∈[1,3]的最值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若存在x0∈[1,e],使得f(x0)<0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-$\frac{π}{6}$)=a截得的弦長(zhǎng)為2$\sqrt{3}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖所示是y=f(x)的導(dǎo)函數(shù)的圖象,有下列四個(gè)命題:
①f(x)在(-3,1)上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù);
④x=2是f(x)的極小值點(diǎn).
其中真命題為②③(填寫所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當(dāng)tanα=3,求cos2α-3sinαcosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案