5.如圖所示是y=f(x)的導(dǎo)函數(shù)的圖象,有下列四個(gè)命題:
①f(x)在(-3,1)上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù);
④x=2是f(x)的極小值點(diǎn).
其中真命題為②③(填寫所有真命題的序號(hào)).

分析 通過讀圖得出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點(diǎn),得出答案.

解答 解:由圖象得:f(x)在(-3,-1),(2,4)上遞減,在(-1,2),(4,+∞)遞增,
∴①f(x)在(-3,1)上是增函數(shù),不正確,
②x=-1是f(x)的極小值點(diǎn),正確;
③f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù),正確;
④x=2是f(x)的極大值點(diǎn).不正確,
故答案為:②③.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,函數(shù)的極值問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,⊙O是△ABC的外接圓,D是$\widehat{AC}$的中點(diǎn),BD交AC于點(diǎn)E.
(I)求證:AB•CD=BD•AE
(Ⅱ)若CD=2,AC=2$\sqrt{3}$,求⊙O的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2-ax-3在區(qū)間(-∞,4]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知三棱柱ABC-A1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,E為BB1的中點(diǎn),F(xiàn)為CB1的中點(diǎn).
(1)證明:平面AEF⊥平面CAA1C1;
(2)若CA=2,AA1=4,求B1到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=ex+ae-x,若f′(x)≥2$\sqrt{3}$恒成立,則a的取值范圍為(  )
A.[3,+∞)B.(0,3]C.[-3,0)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.極坐標(biāo)系中曲線Γ的極坐標(biāo)方程為ρ=$\frac{4cosθ}{{{{sin}^2}θ}}$,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,單位長(zhǎng)度不變,直線l1,l2均過點(diǎn)F(1,0),且l1⊥l2,直線l1的傾斜角為α.
(1)寫出曲線Γ的直角坐標(biāo)方程;寫出l1,l2的參數(shù)方程;
(2)設(shè)直線l1,l2分別與曲線Γ交于點(diǎn)A,B和C,D,線段AB和CD的中點(diǎn)分別為M,N,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x2-1|,g(x)=a|x|-1.
(Ⅰ)求不等式f(x)≤3的解集;
(Ⅱ)若f(x)≥g(x)對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若集合A={1,2,3}和B及C={1,2,3,4,5},且集合B滿足A∩B=A和C∪B=C,則集合B的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=sinx-cosx-1的最小正周期是2π,單調(diào)遞增區(qū)間是[2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$],k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案