分析 (1)求出g(x)的解析式以及a的值,從而求出g(f(x))的解析式,求出函數(shù) 的單調(diào)區(qū)間即可;
(2)令φ(x)=f(x)h(x)-$\frac{1}{x}$,(x>0),根據(jù)函數(shù)的單調(diào)性得到φ(x)在(0,+∞)遞增;從而證出結(jié)論.
解答 解:(1)函數(shù)g(x)是h(x)=ex的反函數(shù),
可得g(x)=lnx;
函數(shù)f(x)=x2+ax(a>0)在[-1,2]上的最大值為8,
只能是f(-1)=8或f(2)=8,
即有1-a=8或4+2a=8,
解得a=2(-7舍去),
函數(shù)g(f(x))=ln(x2+2x),
由x2+2x>0,可得x>0或x<-2.
由復(fù)合函數(shù)的單調(diào)性,可得
函數(shù)g(f(x))的單調(diào)增區(qū)間為(0,+∞);
單調(diào)減區(qū)間為(-∞,-2);
(2)證明:由(1)得:f(x)=x2+2x,即φ(x)=f(x)h(x)-$\frac{1}{x}$,(x>0),
設(shè)0<x1<x2,則x1-x2<0,x1x2>0,∴$\frac{{x}_{1}{-x}_{2}}{{{x}_{1}x}_{2}}$<0,
∵f(x)在(0,+∞)遞增且f(x)>0,
∴f(x2)>f(x1)>0,
∵${e}^{{x}_{2}}$>${e}^{{x}_{1}}$>0,∴f(x1)${e}^{{x}_{1}}$<f(x2)${e}^{{x}_{2}}$,
∴φ(x1)-φ(x2)=f(x1)${e}^{{x}_{1}}$-f(x2)${e}^{{x}_{2}}$+$\frac{{x}_{1}{-x}_{2}}{{{x}_{1}x}_{2}}$<0,
即φ(x1)<φ(x2),∴φ(x)在(0,+∞)遞增;
∵φ($\frac{1}{2}$)=$\frac{5}{4}$$\sqrt{c}$-2>$\frac{5}{4}$$\sqrt{2.56}$-2=0,
φ($\frac{1}{e}$)=$\frac{2e+1}{{e}^{2}}$${e}^{\frac{1}{e}}$-e<${e}^{\frac{1}{e}}$-e<0,
即φ($\frac{1}{2}$)φ($\frac{1}{e}$)<0,
∴函數(shù)y=f(x)h(x)-$\frac{1}{x}$(x>0)恰有1個(gè)零點(diǎn)x0,且x0∈($\frac{1}{e}$,$\frac{1}{2}$),
∴(${{x}_{0}}^{2}$+2x0)${e}^{{x}_{0}}$-$\frac{1}{{x}_{0}}$=0,即${e}^{{x}_{0}}$=$\frac{1}{{{(x}_{0}}^{2}+{2x}_{0}{)x}_{0}}$,
∴${{x}_{0}}^{2}$h(x0)-g(x0)=${{x}_{0}}^{2}$$\frac{1}{{{(x}_{0}}^{2}+{2x}_{0}{)x}_{0}}$-lnx0=$\frac{1}{{x}_{0}+2}$-lnx0,
∵y=$\frac{1}{x+2}$-lnx在(0,$\frac{1}{2}$)上是減函數(shù),
∴$\frac{1}{{x}_{0}+2}$-lnx0>$\frac{2}{5}$-ln$\frac{1}{2}$=$\frac{2}{5}$+ln2>$\frac{2}{5}$+0.6=1,
即g(x0)<${{x}_{0}}^{2}$h(x0)-1,
綜上,函數(shù)y=f(x)h(x)-$\frac{1}{x}$(x>0)恰有一個(gè)零點(diǎn)x0,且g(x0)<x02h(x0)-1.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的零點(diǎn)問題,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1) | B. | (2,+∞) | C. | (0,2) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{AB}•\overrightarrow{AQ}$ | B. | $\overrightarrow{AC}•\overrightarrow{AQ}$ | C. | $\overrightarrow{AD}•\overrightarrow{AQ}$ | D. | $\overrightarrow{AE}•\overrightarrow{AQ}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com