3.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a1=8,S10=-10.
(Ⅰ)求an,Sn
(Ⅱ)設(shè)Tn=|a1|+|a2|+…+|an|,求Tn

分析 (I)設(shè)等差數(shù)列{an}的公差為d,由a1=8,S10=-10.利用求和公式與通項(xiàng)公式即可得出.
(II)由an=10-2n≥0,解得n≤5.可得n≤5時(shí),Tn=Sn.n≥6時(shí),Tn=2S5-Sn

解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,∵a1=8,S10=-10.
∴$10×8+\frac{10×9}{2}×d$=-10,解得d=-2.
∴an=8-2(n-1)=10-2n.
Sn=$\frac{n(8+10-2n)}{2}$=-n2+9n.
(II)由an=10-2n≥0,解得n≤5.
∴n≤5時(shí),Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=-n2+9n.
n≥6時(shí),Tn=S5-a6-…-an=2S5-Sn=2×(-52+9×5)-(-n2+9n)
=n2-9n+40.
∴Tn=$\left\{\begin{array}{l}{-{n}^{2}+9n,n≤5}\\{{n}^{2}-9n+40,n≥6}\end{array}\right.$(n∈N*).

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}是首項(xiàng)為2的等差數(shù)列,數(shù)列{bn}是公比為2的等比數(shù)列,且滿足a2+b3=7,a4+b5=21.
(1)求數(shù)列{an}與{bn}的通項(xiàng);
(2)令${c_n}=\frac{a_n}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(Ⅰ)求不等式-2<|x-1|-|x+2|<0的解集.
(Ⅱ)設(shè)a,b,均為正數(shù),$h=max\{\frac{2}{{\sqrt{a}}},\frac{{{a^2}+{b^2}}}{{\sqrt{ab}}},\frac{2}{{\sqrt}}\}$,證明:h≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a=2,b=3,tanB=3,則sinA的值為$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A、B、C所對的邊為a、b、c,且$\sqrt{3}$asinC-c(2+cosA)=0.
(1)求角A的大;
(2)若△ABC的最大邊長為$\sqrt{7}$,且sinC=2sinB,求最小邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.拋物線y2=x與直線x-2y-3=0的兩個(gè)交點(diǎn)分別為P、Q,點(diǎn)M在拋物線上從P向Q運(yùn)動(dòng)(點(diǎn)M不同于點(diǎn)P、Q),
(Ⅰ)求由拋物線y2=x與直線x-2y-3=0所圍成的封閉圖形面積;
(Ⅱ)求使△MPQ的面積為最大時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|log2x>2},$B=\{x|{(\frac{1}{2})^x}≥\frac{1}{16}\}$,則下列結(jié)論成立的是( 。
A.A∩B=AB.(∁RA)∩B=AC.A∩(∁RB)=AD.(∁RA)∩(∁RB)=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{a+lnx}{x}$,曲線f(x)=$\frac{a+lnx}{x}$在點(diǎn)(e,f(e))處的切線與直線e2x-y+e=0垂直.(注:e為自然對數(shù)的底數(shù))
(Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+1)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)求證:當(dāng)x>1時(shí),$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.三世紀(jì)中期,魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法,所謂割圓術(shù),就是用圓內(nèi)接正多邊形的面積去無限逼近圓面積并以此求取圓周率的方法.按照這樣的思路,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和 3.1416這兩個(gè)近似數(shù)值.如圖所示是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,若輸出的n=24,則p的值可以是(參考數(shù)據(jù):$\sqrt{3}$=1.732,sin15°≈0.2588,sin7.5°≈0.1305,sin3.75°≈0.0654)( 。
A.2.6B.3C.3.1D.3.14

查看答案和解析>>

同步練習(xí)冊答案