【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,點M(x0,1)在C上,且|MF|=.
(1)求p的值;
(2)若直線l經(jīng)過點Q(3,-1)且與C交于A,B(異于M)兩點,證明:直線AM與直線BM的斜率之積為常數(shù).
【答案】(1);(2)
【解析】
(1)拋物線定義知|,則 ,求得x0=2p,代入拋物線方程, ;
(2)由(1)得M(1,1),拋物線C:y2=2x,
當(dāng)直線l經(jīng)過點Q(3,-1)且垂直于x軸時,直線AM的斜率 ,直線BM的斜率 , .
當(dāng)直線l不垂直于x軸時,直線l的方程為y+1=k(x-3),代入拋物線方程,由韋達定理及斜率公式求得 ,即可證明直線AM與直線BM的斜率之積為常數(shù).
(1)由拋物線定義知|MF|=x0+,則x0+=x0,解得x0=2p,
又點M(x0,1)在C上,所以2px0=1,解得x0=1,p=.
(2)由(1)得M(1,1),C:y2=x.
當(dāng)直線l經(jīng)過點Q(3,-1)且垂直于x軸時,不妨設(shè)A(3,),B(3,-),
則直線AM的斜率kAM=,直線BM的斜率kBM=,所以kAM·kBM=-×=-.
當(dāng)直線l不垂直于x軸時,設(shè)A(x1,y1),B(x2,y2),
則直線AM的斜率kAM===,同理直線BM的斜率kBM=,∴kAM·kBM=·=.
設(shè)直線l的斜率為k(顯然k≠0且k≠-1),則直線l的方程為y+1=k(x-3).
聯(lián)立消去x,得ky2-y-3k-1=0,
所以y1+y2=,y1y2=-=-3-,故kAM·kBM===-.
綜上,直線AM與直線BM的斜率之積為-.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角的對邊分別為,且2acosC+c=2b.
(1)若點在邊上,且,求的面積;
(2)若為銳角三角形,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線和是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列命題正確的是( )
A. 與都不相交 B. 與都相交
C. 至多與中的一條相交 D. 至少與中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程有兩個不同的實數(shù)根,求證:;
(2)若存在使得成立,求實數(shù)的取值范圍.(其中為自然對數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:函數(shù)的兩個零點分別在區(qū)間和上;命題:函數(shù)有極值.若命題,為真命題的實數(shù)的取值集合分別記為,.
(1)求集合,;
(2)若命題“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)3個不同的小球放入編號為1,2,3,4的4個盒子中,一共有多少種不同的放法?
(2)3個不同的小球放入編號為1,2,3,4的4個盒子中,恰有2個空盒的放法共有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為A,若且時總有,則稱為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:
①函數(shù)(xR)是單函數(shù);
②指數(shù)函數(shù)(xR)是單函數(shù);
③若為單函數(shù),且,則;
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).
其中的真命題是_________.(寫出所有真命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,底面ABCD是等腰梯形,,,,頂點在底面ABCD內(nèi)的射影恰為點C.
(1)求證:BC⊥平面ACD1;
(2)若直線DD1與底面ABCD所成的角為,求平面與平面ABCD所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com