【題目】已知函數(shù),.

(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2)求證:.

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo),研究函數(shù)的單調(diào)性,進(jìn)而得到函數(shù)的變化趨勢(shì),結(jié)合圖像得到函數(shù)的零點(diǎn)個(gè)數(shù);(2)不等式可化為,,證得即可.

詳解:(1)由題,,所以當(dāng)時(shí),,上單調(diào)遞增,當(dāng)時(shí),,上單調(diào)遞減,∴有極大值.

且當(dāng)時(shí),;時(shí),,所以,當(dāng)時(shí),恰有一個(gè)零點(diǎn);時(shí),有兩個(gè)零點(diǎn);時(shí),沒(méi)有零點(diǎn).

(2)由(1)可知,.①當(dāng)時(shí),不等式可化為,記,得.

設(shè),則

上單調(diào)遞增,又,上圖象是不間斷的,

∴存在唯一的實(shí)數(shù),使得,∴當(dāng)時(shí),,上遞減,當(dāng)時(shí),,上遞增,

∴當(dāng)時(shí),有極小值,即為最小值,

,所以,所以.

,∴,∴,

所以,,即.

②當(dāng)時(shí),設(shè),則

上單調(diào)遞減,∴,

所以,

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2018·江西六校聯(lián)考)ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a=4,b=4,cosA=-.

(1)求角B的大。

(2)f(x)=cos2x+sin2(x+B),求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在著名的漢諾塔問(wèn)題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤,且每次移動(dòng)后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個(gè)圓盤從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市地鐵全線共有四個(gè)車站,甲、乙兩人同時(shí)在地鐵第1號(hào)車站(首發(fā)站)乘車,假設(shè)每人自第2號(hào)站開始,在每個(gè)車站下車是等可能的,約定用有序?qū)崝?shù)對(duì)表示甲在號(hào)車站下車,乙在號(hào)車站下車

)用有序?qū)崝?shù)對(duì)把甲、乙兩人下車的所有可能的結(jié)果列舉出來(lái);

)求甲、乙兩人同在第3號(hào)車站下車的概率;

)求甲、乙兩人在不同的車站下車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加某次知識(shí)競(jìng)賽的1000同學(xué)中,隨機(jī)抽取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成,,,,六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問(wèn)題:

1)補(bǔ)全頻率分布直方圖,并估計(jì)本次知識(shí)競(jìng)賽的均分;

2)如果確定不低于85分的同學(xué)進(jìn)入復(fù)賽,問(wèn)這1000名參賽同學(xué)中估計(jì)有多少人進(jìn)人復(fù)賽;

3)若從第一組,第二組和第六組三組學(xué)生中分層抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求所抽取的2人成績(jī)之差的絕對(duì)值大于20的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一:對(duì)于一個(gè)函數(shù),若存在兩條距離為的直線,使得時(shí),恒成立,則稱函數(shù)內(nèi)有一個(gè)寬度為的通道.

定義二:若一個(gè)函數(shù)對(duì)于任意給定的正數(shù),都存在一個(gè)實(shí)數(shù),使得函數(shù)內(nèi)有一個(gè)寬度為的通道,則稱在正無(wú)窮處有永恒通道.

下列函數(shù);;;. 其中在正無(wú)窮處有永恒通道的函數(shù)序號(hào)是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4

)求{an}的通項(xiàng)公式;

)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生物小組為了研究溫度對(duì)某種酶的活性的影響進(jìn)行了一組實(shí)驗(yàn),得到的實(shí)驗(yàn)數(shù)據(jù)經(jīng)整理得到如下的折線圖:

1)由圖可以看出,這種酶的活性與溫度具有較強(qiáng)的線性相關(guān)性,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

2)求關(guān)于的線性回歸方程,并預(yù)測(cè)當(dāng)溫度為時(shí),這種酶的活性指標(biāo)值.(計(jì)算結(jié)果精確到0.01

參考數(shù)據(jù):,.

參考公式:相關(guān)系數(shù).

回歸直線方程,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),點(diǎn)M(x0,1)C,|MF|=.

(1)p的值;

(2)若直線l經(jīng)過(guò)點(diǎn)Q(3,-1)且與C交于A,B(異于M)兩點(diǎn),證明:直線AM與直線BM的斜率之積為常數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案