【題目】已知拋物線的焦點為是拋物線上的任意一點.當(dāng)軸時,的面積為4(為坐標(biāo)原點).
(1)求拋物線的方程;
(2)若,連接并延長交拋物線于,點關(guān)于軸對稱,點為直線與軸的交點,且為直角三角形,求點到直線的距離的取值范圍.
【答案】(1);(2).
【解析】
(1)由條件有,,則由的面積為4,可得出答案.
(2) ,,則,設(shè)直線的方程為,與拋物線方程聯(lián)立,寫出韋達(dá)定理,利用三點共線結(jié)合韋達(dá)定理得出,為直角三角形,所以直線的斜率,所以,得.因為,所以,則點到直線的距離,,然后求其范圍即可.
(1)因為為拋物線的焦點,所以,所以.
因為軸,所以,所以.
因為的面積為4,所以,且,所以,
故拋物線的方程為;
(2)設(shè)直線的方程為,,,則.
聯(lián)立,整理得.
因為,所以,.
設(shè),則,.
因為三點共線,所以,
所以.
所以.
因為,,所以.
因為點關(guān)于軸對稱,所以,
因為為直角三角形,所以,
所以直線的斜率,所以.
由,得.
因為,所以,因為,所以,
則點到直線的距離.
設(shè),則,且,
故
因為在上單調(diào)遞減,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進行單打比賽,假設(shè)甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時甲得分的概率為0.4,各球的結(jié)果相互獨立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令.求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校醫(yī)務(wù)室欲研究晝夜溫差大小與高三患感冒人數(shù)多少之間的關(guān)系,他們統(tǒng)計了2019年9月至2020年1月每月8號的晝夜溫差情況與高三因患感冒而就診的人數(shù),得到如下資料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
晝夜溫差 | 5 | 8 | 12 | 13 | 16 |
就診人數(shù) | 10 | 16 | 26 | 30 | 35 |
該醫(yī)務(wù)室確定的研究方案是先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.假設(shè)選取的是2019年9月8日與2020年1月8日的2組數(shù)據(jù).
(1)求就診人數(shù)關(guān)于晝夜溫差的線性回歸方程 (結(jié)果精確到0.01)
(2)若由(1)中所求的線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過3人,則認(rèn)為得到的線性回歸方程是理想的,試問該醫(yī)務(wù)室所得線性回歸方程是否理想?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,在棱長為 a 的正方體ABCD-A1 B1C1 D1 中,E 、F 分別 是棱 AB 與BC 的中點.
(1)求二 面角 B-FB1-E 的大小;
(2)求點 D 到平面B1EF 的距離;
(3)在棱 DD1 上能否找到一點 M, 使 BM ⊥平面EFB1 ? 若能, 試確定點 M 的位置;若不能, 請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考,取消文理科,實行“”,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)分別估計中青年和中老年對新高考了解的概率;
(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?
了解新高考 | 不了解新高考 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(3)若從年齡在的被調(diào)查者中隨機選取3人進行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
下列敘述錯誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個月的空氣質(zhì)量越來越好
D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機抽取了100名中學(xué)生進行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為“高消費群” .
(1)求m,n的值,并求這100名學(xué)生月消費金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費群”與性別有關(guān)?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com