18.已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

分析 (1)化簡函數(shù)f(x)為正弦型函數(shù),求出f(x)的最小正周期;
(2)根據(jù)正弦函數(shù)的單調(diào)性,求出f(x)的單調(diào)遞減區(qū)間.

解答 解:(1)函數(shù)f(x)=sin2x+2sinxcosx+3cos2x
=$\frac{1-cos2x}{2}$+sin2x+3•$\frac{1+cos2x}{2}$
=sin2x+cos2x+2
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+2,
∴函數(shù)f(x)的最小正周期為T=$\frac{2π}{ω}$=π;
(2)令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,
∴kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,k∈Z,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了三角恒等變換的問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.正項等比數(shù)列{an}中,a4•a5=32,則log2a1+log2a2+…+log2a8的值為( 。
A.10B.20C.36D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在R上定義運算$|\begin{array}{l}{a}&{c}\\&yipjb0w\end{array}|$=ad-bc,若f(x)=$|\begin{array}{l}{2sinx}&{2sinx}\\{\sqrt{3}sinx}&{cosx}\end{array}|$,x∈[0,π],則f(x)的遞增區(qū)間為(  )
A.[0,$\frac{π}{6}$],[$\frac{2π}{3}$,π]B.[$\frac{π}{6}$,$\frac{2π}{3}$]C.[0,$\frac{π}{12}$],[$\frac{7π}{12}$,π]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=cos(2x-\frac{π}{3})-2\sqrt{3}$sinxcosx.
(1)求f(x)的最小值正周期、最大值及取得最大值時x的值;
(2)討論f(x)在區(qū)間[0,π]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=f(x)存在反函數(shù)y=f-1(x),且f(x)+f(-x)=2016,則f-1(x)+f-1(2016-x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,其中俯視圖是半圓里面內(nèi)切一個小圓,若該幾何體的表面積為16+16π,則正視圖中的a值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖程序框圖是為了求出滿足3n-2n>1000的最小偶數(shù)n,那么在兩個空白框中,可以分別填入( 。
A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在區(qū)間($\frac{1}{2}$,3)上單調(diào)遞減,則實數(shù)a的取值范圍是[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)O為△ABC的外心,且5$\overrightarrow{OA}+12\overrightarrow{OB}+13\overrightarrow{OC}=\overrightarrow{0}$,則△ABC的內(nèi)角C的值為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊答案