【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域,其中三角形區(qū)域為生活區(qū),四邊形區(qū)域為教學(xué)區(qū), 為學(xué)校的主要道路(不考慮寬度). .

(1)求道路的長度;(2)求生活區(qū)面積的最大值.

【答案】(1);(2).

【解析】試題分析:(1)連接BD,由余弦定理可得BD,由已知可求 , ,可得 ,利用勾股定理即可得解 的值. (2)設(shè) ,由正弦定理,可得 ,利用三角函數(shù)恒等變換的應(yīng)用化簡可得,結(jié)合范圍3,利用正弦函數(shù)的性質(zhì)可求面積的最大值,從而得解.

試題解析:

1

如圖,連接,在中,由余弦定理得:

,.

,,

,.

中,所以.

2)設(shè),.

中,由正弦定理,得,

.

.

.

,即時, 取得最大值為

即生活區(qū)面積的最大值為.

注:第(2)問也可用余弦定理和均值不等式求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)命題“ ”為假命題,求實數(shù)a的取值范圍;
(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣ ]
B.(0,1]
C.[﹣ ,1]
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當x>0時,g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對任意的x∈R都有g(shù)(x)=g(﹣x),又函數(shù)f(x)滿足:對任意的x∈R,都有 成立.當 時,f(x)=x3﹣3x.若關(guān)于x的不等式g[f(x)]≤g(a2﹣a+2)對x∈[﹣ , ]恒成立,則a的取值范圍是(
A.a∈R
B.0≤a≤1
C.
D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應(yīng)用.某網(wǎng)絡(luò)運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下?lián)尩降募t包個數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):

手機品牌 型號

I

II

III

IV

V

甲品牌(個)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手機品牌 紅包個數(shù)

優(yōu)

非優(yōu)

合計

甲品牌(個)

乙品牌(個)

合計

(1)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認為搶到的紅包個數(shù)與手機品牌有關(guān)?

(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.

①求在型號I被選中的條件下,型號II也被選中的概率;

②以表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點的坐標分別為,直線相交于點,且它們的斜率之積是,點的軌跡為曲線.

(Ⅰ)求的方程;

(Ⅱ)過點作直線交曲線兩點,交軸于點,若, ,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的右焦點為F(2,0),設(shè)A、B為雙曲線上關(guān)于原點對稱的兩點,AF的中點為M,BF的中點為N,若原點O在以線段MN為直徑的圓上,直線AB的斜率為 ,則雙曲線的離心率為(
A.4
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行射擊比賽,各射擊4局,每局射擊10次,射擊命中目標得1分,未命中目標得0分.兩人4局的得分情況如下:

(1)已知在乙的4局比賽中隨機選取1局時,此局得分小于6分的概率不為零,且在4局比賽中,乙的平均得分高于甲的平均得分,求的值;

(2)如果 ,從甲、乙兩人的4局比賽中隨機各選取1局,并將其得分分別記為,求的概率;

(3)在4局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(﹣2,1),則函數(shù)f(2x﹣1)的定義域為(
A.(﹣ ,1)
B.(﹣5,1)
C.( ,1)
D.(﹣2,1)

查看答案和解析>>

同步練習冊答案