【題目】已知橢圓:的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知橢圓的左焦點為,直線與橢圓交于不同兩點,(都在軸上方),且.
(。┤,求的面積;
(ⅱ)直線是否恒過定點?若過定點,求出該定點的坐標(biāo);若不過定點,請說明理由.
【答案】見解析
【解析】(Ⅰ)由橢圓的離心率,可得.
所以,所以.
又因為點在橢圓上,
所以,即,解得,故.
∴橢圓的方程為. -----------------4分
(Ⅱ)橢圓的左焦點為.
(ⅰ)當(dāng)時,.
故直線的方程為,直線的方程為,即.
由,消元得,解得或.
由題意可得,故點的坐標(biāo)為.
由/span>,消元得,解得或.
由題意可得,故點的坐標(biāo)為.
所以點到直線的距離.
而,所以的面積.--------------- 8分
(ⅱ)設(shè)直線方程為,,.
聯(lián)立方程組,消去,得,-------------10分
由根與系數(shù)的關(guān)系可得,.
所以
,
所以,即,
代入整理,,即. -----------------13分
所以直線的方程為,所以直線總過定點. -----------------14分
【命題意圖】本題考查橢圓的方程與性質(zhì)、直線和橢圓的位置關(guān)系、三角形面積的求解以及定點的探究性問題,意在考查基本的邏輯推理能力、運算能力和數(shù)學(xué)應(yīng)用意識等.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,直線y=x+2過橢圓C的左焦點F1.
(1)求橢圓C的標(biāo)準方程;
(2)設(shè)過點A(0,﹣1)的直線l與橢圓交于不同兩點M、N,當(dāng)△MON的面積為 時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中,四邊形為平行四邊形,其中,,,等邊所在平面與平面垂直,平面,且.
(Ⅰ)點在棱上,且,為的重心,求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形,其中,,,等邊所在平面與平面垂直.
(Ⅰ)點在棱上,且,為的重心,求證:平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本.法國的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國.禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進行年齡調(diào)查,隨機抽取了一天名讀書者進行調(diào)查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖.問:
(1)估計在40名讀書者中年齡分布在的人數(shù);
(2)求40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書者中任取2名,求恰有1名讀書者年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).例如函數(shù) 在[1,9]上就具有“DK”性質(zhì).
(1)判斷函數(shù)f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性質(zhì)?說明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)極值點的個數(shù),并說明理由;
(2)若, 恒成立,求的最大整數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com