【題目】如圖,邊長(zhǎng)為的正方形與梯形所在的平面互相垂直,已知,,點(diǎn)在線段.

1)證明:平面平面;

2)判斷點(diǎn)的位置,使得平面與平面所成的銳二面角為.

【答案】(1)證明過(guò)程見(jiàn)詳解;(2)點(diǎn)在線段的靠近點(diǎn)的三等分點(diǎn)處.

【解析】

(1)先由題中數(shù)據(jù),根據(jù)勾股定理,得到,再由面面垂直的性質(zhì)定理,得到,根據(jù)線面垂直的判定定理,以及面面垂直的判定定理,即可證明結(jié)論成立;

2)先在面內(nèi)過(guò)點(diǎn),垂足為,根據(jù)題意,得到;,以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,設(shè),因?yàn)辄c(diǎn)在線段上,所以可設(shè),得到,再分別求出平面與平面的一個(gè)法向量,根據(jù)向量夾角公式,以及題中條件,即可求出結(jié)果.

1)因?yàn)榈酌?/span>為梯形,,,所以,

,所以,

因?yàn)?/span>,正方形邊長(zhǎng)為,

所以,因此,

又因?yàn)槠矫?/span>平面,平面平面

所以平面,因此,

,所以平面;

因?yàn)?/span>平面,所以平面平面;

(2)在面內(nèi)過(guò)點(diǎn),垂足為,因?yàn)?/span>,所以;

又因?yàn)?/span>平面,所以

以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,

,,,

設(shè),因?yàn)辄c(diǎn)在線段上,所以可設(shè),

,

所以,即

設(shè)平面的一個(gè)法向量為,

,所以,令,則,

又易知:平面,所以為平面的一個(gè)法向量,

所以

解得:,所以,

即,點(diǎn)點(diǎn)在線段的靠近點(diǎn)的三等分點(diǎn)處.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個(gè)結(jié)論:

①曲線C恰好經(jīng)過(guò)6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過(guò);

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號(hào)是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).

(Ⅰ)求ab的值;

(Ⅱ)求不等式ax2-(c+bx+bc<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙、丙三位同學(xué)在某次考試中總成績(jī)列前三名,有,,三位學(xué)生對(duì)其排名猜測(cè)如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績(jī)公布后得知,,,三人都恰好猜對(duì)了一半,則第一名是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.

(I)求拋物線方程;

(II)若,過(guò)P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知二次函數(shù)、均為實(shí)常數(shù),)的最小值是0,函數(shù)的零點(diǎn)是,函數(shù)滿足,其中,為常數(shù).

1)已知實(shí)數(shù)、滿足、,且,試比較的大小關(guān)系,并說(shuō)明理由;

2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,且甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

B.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,但乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

C.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,且乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊

D.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,但甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).M是曲線上的動(dòng)點(diǎn),將線段OM繞O點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案