分析 由已知求得f(x)的解析式,再由函數(shù)的圖象平移得到y(tǒng)=2sin(x+m-$\frac{π}{3}$),由所得到圖象關(guān)于y軸對(duì)稱得$m-\frac{π}{3}=\frac{π}{2}+kπ$,取k=0得答案.
解答 解:由已知可得$y=f(x)=|{\begin{array}{l}{sinx}&{\sqrt{3}}\\{cosx}&1\end{array}}|$=sinx$-\sqrt{3}cosx$=$2sin(x-\frac{π}{3})$.
函數(shù)y=f(x)向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得函數(shù)解析式為y=2sin(x+m-$\frac{π}{3}$).
∵所得到圖象關(guān)于y軸對(duì)稱,
∴$m-\frac{π}{3}=\frac{π}{2}+kπ$,得m=$\frac{5π}{6}+kπ$,k∈Z.
當(dāng)k=0時(shí),m的最小值是$\frac{5π}{6}$.
故答案為:$\frac{5}{6}π$.
點(diǎn)評(píng) 本題考查y=Asin(ωx+φ)型函數(shù)的圖象平移和性質(zhì),是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5π | B. | 13π | C. | 17π | D. | 25π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±1 | B. | $±\sqrt{2}$ | C. | $±\frac{{\sqrt{2}}}{2}$ | D. | $±\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一個(gè)命題的逆命題為真,則它的逆否命題一定為真 | |
B. | 若“a>b”,則“a•c>b•c” | |
C. | “a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0” | |
D. | 一個(gè)命題的否命題為真,則它的逆命題一定為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -9 | B. | -6 | C. | 6 | D. | 9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com