若實數(shù)x,y滿足條件
x+y-2≥0
x-y-2≤0
y≤2
,則z=x+y的最大值為(  )
A、2
B、4
C、2
5
D、6
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用z的幾何意義,即可得到結(jié)論.
解答: 解:作出不等式組
x+y-2≥0
x-y-2≤0
y≤2
對應的平面區(qū)域如圖:
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當直線y=-x+z經(jīng)過點A時,直線的截距最大,
此時z最大,
x-y-2=0
y=2
,解得
x=2
y=2
,
即A(4,2),此時z=4+2=6,
故選:D.
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=|log2x|+x-2的零點個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,過點A(4,
2
)引圓ρ=4sinθ的一條切線,則切線長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設某商店只有每盒10支裝的鉛筆和每盒7支裝的鉛筆兩種包裝類型.學生打算購買2015支鉛筆,不能拆盒,則滿足學生要求的方案中,購買的兩種包裝的總盒數(shù)的最小值是
 
,滿足要求的所有購買方案是總數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x+y-7≥0
x-3y+1≤0
3x-y-5≥0
,則z=2x+y的最小值為( 。
A、5B、8C、10D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知隨機變量ξ服從正態(tài)分布N(μ,δ2),且P(ξ<1)=0.5,P(ξ>2)=0.4,則P(0<ξ<1)=( 。
A、0.4B、0.3
C、0.2D、0.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>-1,y>0且滿足x+2y=2,則
1
x+1
+
2
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的焦點F(a,0)(a<0),則拋物線的標準方程是( 。
A、y2=4ax
B、y2=2ax
C、y2=-4ax
D、y2=-2ax

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2,g(x)=lgx,若有f(a)=g(b),則b的取值范圍是( 。
A、[0,+∞)
B、(0,+∞)
C、[1,+∞)
D、(1,+∞)

查看答案和解析>>

同步練習冊答案