9.如果C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{31}{n+1}$,則(1+x)2n的展開式中系數(shù)最大的項(xiàng)為70x4

分析 由k•${C}_{n+1}^{k}$=(n+1)•${C}_{n}^{k-1}$,得$\frac{1}{k}$•${C}_{n}^{k-1}$=$\frac{1}{n+1}$•${C}_{n+1}^{k}$,化簡C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$,求出n的值,再求二項(xiàng)式展開式中系數(shù)最大的項(xiàng).

解答 解:由k•${C}_{n+1}^{k}$=(n+1)•${C}_{n}^{k-1}$,得$\frac{1}{k}$•${C}_{n}^{k-1}$=$\frac{1}{n+1}$•${C}_{n+1}^{k}$,
∴C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$
=$\frac{1}{n+1}$•${C}_{n+1}^{1}$+$\frac{1}{n+1}$•${C}_{n+1}^{2}$+$\frac{1}{n+1}$•${C}_{n+1}^{3}$+…+$\frac{1}{n+1}$•${C}_{n+1}^{n+1}$
=$\frac{1}{n+1}$•(${C}_{n+1}^{1}$+${C}_{n+1}^{2}$+${C}_{n+1}^{3}$+…+${C}_{n+1}^{n+1}$)
=$\frac{1}{n+1}$•(2n+1-1)=$\frac{31}{n+1}$,
解得n=4;
∴(1+x)2×4的展開式中系數(shù)最大的項(xiàng)為${C}_{8}^{4}$x4=70x4
故答案為:70x4

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用、組合數(shù)的計(jì)算公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=x3-mx-1在R上存在三個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是($\frac{3}{\root{3}{4}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a∈R,若關(guān)于x的方程x2+x+|a-$\frac{1}{4}$|+|a|=0沒有實(shí)根,求a的取值范圍(  )
A.[0,$\frac{1}{4}$]B.(0,$\frac{1}{4}$]C.(-∞,0]∪[$\frac{1}{4}$,+∞)D.(-∞,0)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|y=log2(x-1)},B={x|x<2},則A∩B=( 。
A.{x|0<x<2}B.{x|1<x<2}C.{x|1≤x<2}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=axex,其中常數(shù)a≠0,e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅲ)若直線y=e(x-$\frac{1}{2}$)是曲線y=f(x)的切線,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義域?yàn)镽的函數(shù)y=g(x)滿足以下條件:①?x∈R,g(3-x)=g(3+x)②g(x)=g(x+2)③當(dāng)x∈[1,2]時(shí),g(x)=-2x2+4x-2,若方程g(x)=loga(x+1)(a>0,且a≠1)在[0,+∞)上至少有5個(gè)不等的實(shí)根,則實(shí)數(shù)a的取值范圍為( 。
A.0<a<$\frac{\sqrt{3}}{3}$B.0<a≤$\frac{\sqrt{5}}{5}$C.0<a<$\frac{\sqrt{5}}{5}$D.a≥$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,該程序框圖運(yùn)行后輸出的結(jié)果為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零點(diǎn)之和為0.

查看答案和解析>>

同步練習(xí)冊答案