14.已知函數(shù)f(x)=axex,其中常數(shù)a≠0,e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅲ)若直線y=e(x-$\frac{1}{2}$)是曲線y=f(x)的切線,求實(shí)數(shù)a的值.

分析 (Ⅰ)求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),根據(jù)函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系即可求函數(shù)f(x)的極值;
(Ⅲ)設(shè)出切點(diǎn)坐標(biāo)為(m,amem),求出切線斜率和方程,根據(jù)導(dǎo)數(shù)的幾何意義建立方程關(guān)系即可求實(shí)數(shù)a的值.

解答 解:(Ⅰ)函數(shù)的導(dǎo)數(shù)f′(x)=a(ex+xex)=a(1+x)ex,
若a>0,由f′(x)>0得x>-1,即函數(shù)的單調(diào)遞增區(qū)間為(-1,+∞),
由f′(x)<0,得x<-1,即函數(shù)的單調(diào)遞減區(qū)間為(-∞,-1),
若a<0,由f′(x)>0得x<-1,即函數(shù)的單調(diào)遞增區(qū)間為(-∞,-1),
由f′(x)<0,得x>-1,即函數(shù)的單調(diào)遞減區(qū)間為(-1,+∞);
(Ⅱ)當(dāng)a=1時(shí),由(1)得函數(shù)的單調(diào)遞增區(qū)間為(-1,+∞),函數(shù)的單調(diào)遞減區(qū)間為(-∞,-1),
即當(dāng)x=-1時(shí),函數(shù)f(x)取得極大值為f(-1)=-$\frac{1}{e}$,無(wú)極小值;
(Ⅲ)設(shè)切點(diǎn)為(m,amem),
則對(duì)應(yīng)的切線斜率k=f′(m)=a(1+m)em,
則切線方程為y-amem=a(1+m)em(x-m),
即y=a(1+m)em(x-m)+amem=a(1+m)emx-ma(1+m)em+amem=a(1+m)emx-m2aem,
∵y=e(x-$\frac{1}{2}$)=y=ex-$\frac{1}{2}$e,
∴$\left\{\begin{array}{l}{a(1+m){e}^{m}=e}\\{a{m}^{2}{e}^{m}=\frac{1}{2}e}\end{array}\right.$
∴$\left\{\begin{array}{l}{m=1}\\{a=\frac{1}{2}}\end{array}\right.$,
即若直線y=e(x-$\frac{1}{2}$)是曲線y=f(x)的切線,則實(shí)數(shù)a的值是$\frac{1}{2}$.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的應(yīng)用以及導(dǎo)數(shù)的幾何意義,求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.注意要對(duì)a進(jìn)行分類(lèi)討論,綜合性較強(qiáng),運(yùn)算量較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象.若在區(qū)間$[{-\frac{π}{2},\frac{π}{2}}]$上隨機(jī)取一個(gè)數(shù)x,則事件“g(x)≥1”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若長(zhǎng)方體的一個(gè)頂點(diǎn)上三條棱長(zhǎng)分別是1、2、2,且它的八個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在函數(shù)f(x)=blnx+(x-1)2(x>0)的圖象上任取兩個(gè)不同點(diǎn)P(x1,y1),Q(x2,y2)(x1>x2),總能使得f(x1)-f(x2)≥3(x1-x2),則實(shí)數(shù)b的取值范圍為[$\frac{25}{8}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如果C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{31}{n+1}$,則(1+x)2n的展開(kāi)式中系數(shù)最大的項(xiàng)為70x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題正確的是(  )
A.已知p:?a∈R,方程ax2-2x+a=0有正實(shí)數(shù),則¬p:?a∈R,方程ax2-2x+a=0有負(fù)實(shí)根
B.若X~N(3,4),則P(X<1-3a)=P(X>a2+7)成立的一個(gè)必要不充分條件是a=2
C.若函數(shù)f(x)=-$\frac{1}{3}$x3+2x2-mx-1在R上是減函數(shù),則m>4
D.若y與x的相關(guān)系數(shù)r=1,則y與x有線性相關(guān)關(guān)系,且正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.全國(guó)人大常委會(huì)會(huì)議于2015年12月27日通過(guò)了關(guān)于修改人口與計(jì)劃生育法的決定,“全面二孩”從2016年元旦起開(kāi)始實(shí)施,A市婦聯(lián)為了解該市市民對(duì)“全面二孩”政策的態(tài)度,隨機(jī)抽取了男性市民30人,女市民70人進(jìn)行調(diào)查,得到以下的2×2列聯(lián)表:
支持反對(duì)合計(jì)
男性161430
女性442670
合計(jì)6040100
(1)根據(jù)以上數(shù)據(jù),能否有90%的把握認(rèn)為A市市民“支持全面二孩”與“性別”有關(guān);
(2)現(xiàn)從持“支持”態(tài)度的市民中再按分層抽樣的方法選出15名發(fā)放禮品,分別求所抽取的15人中男性市民和女性市民的人數(shù);
(3)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從A市所有市民中,采用隨機(jī)抽樣的方法抽取3位市民進(jìn)行長(zhǎng)期跟蹤調(diào)查,記被抽取的3位市民中持“支持”態(tài)度人數(shù)為X
(i)求X的分布列;
(ii)求X的數(shù)學(xué)期望E(X)和方差D(X).
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|0<x<3},B={x|2x-1>0,x∈Z},則A∩B=( 。
A.($\frac{1}{2}$,3)B.{1,2,3}C.{1,2}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,某城市有一個(gè)邊長(zhǎng)為4百米的正方形休閑廣場(chǎng),廣場(chǎng)中間陰影部分是一個(gè)雕塑群.建立坐標(biāo)系(單位:百米),則雕塑群的左上方邊緣曲線AB是拋物線y2=4x(1≤x≤3,y≥0)的一段.為方便市民,擬建造一條穿越廣場(chǎng)的直路EF(寬度不計(jì)),要求直路EF與曲線AB相切(記切點(diǎn)為M),并且將廣場(chǎng)分割成兩部分,其中直路EF左上部分建設(shè)為主題陳列區(qū).記M點(diǎn)到OC的距離為m(百米),主題陳列區(qū)的面積為S(萬(wàn)平方米).
(1)當(dāng)M為EF中點(diǎn)時(shí),求S的值;
(2)求S的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案