【題目】某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調(diào)查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中

1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).

2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預算的測試經(jīng)費為10萬元,試問預算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.

【答案】12)預算經(jīng)費不夠測試完這100顆芯片,理由見解析

【解析】

1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分數(shù)的平均數(shù);(2)先求出每顆芯片的測試費用的數(shù)學期望,再比較得解.

1)依題意,,故

又因為.所以,

所求平均數(shù)為

(萬分)

2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率

設每顆芯片的測試費用為X元,則X的可能取值為600900,1200,1500,

,

故每顆芯片的測試費用的數(shù)學期望為

(元),

因為

所以顯然預算經(jīng)費不夠測試完這100顆芯片.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】哈市某公司為了了解用戶對其產(chǎn)品的滿意度,從南崗區(qū)隨機調(diào)查了40個用戶,根據(jù)用戶對其產(chǎn)品的滿意度的評分,得到用戶滿意度評分的頻率分布表.

滿意度評分分組

頻數(shù)

2

8

14

10

6

1)在答題卡上作出南崗區(qū)用戶滿意度評分的頻率分布直方圖;

南崗區(qū)用戶滿意度評分的頻率分布直方圖

2)根據(jù)用戶滿意度評分,將用戶的滿意度評分分為三個等級:

滿意度評分

低于70

70分到89

不低于90

滿意度等級

不滿意

滿意

非常滿意

估計南崗區(qū)用戶的滿意度等級為不滿意的概率;

3)求該公司滿意度評分的中位數(shù)(保留小數(shù)點后兩位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點為,上、下頂點為,,記四邊形的內(nèi)切圓為.

(1)求圓的標準方程;

(2)已知圓的一條不與坐標軸平行的切線交橢圓PM兩點.

(i)求證:;

(ii)試探究是否為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知圓的參數(shù)方程是為參數(shù)).為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程是,射線與圓的交點為、兩點,與直線的交點為.

1)求圓的極坐標方程;

2)求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知圓的參數(shù)方程是為參數(shù)).為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程是,射線與圓的交點為兩點,與直線的交點為.

1)求圓的極坐標方程;

2)求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)當.

①若有兩個極值點,),求證:;

②若對任意的,都有成立,求正實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,側面⊥底面,底面為直角梯形,//,,,,的中點.

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長;

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

同步練習冊答案