15.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N為線段AC上的點,若MN=2,則三棱錐P-MNB的體積為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{2}{3}$

分析 取AC的中點O,連結(jié)PO,BO,則利用面面垂直的性質(zhì)可證PO⊥平面ABC,利用勾股定理計算BO,PO,于是VP-BMN=$\frac{1}{3}{S}_{△BMN}•PO$.

解答 解取AC的中點O,連結(jié)PO,BO.
∵PA=PC,O是AC的中點,
∴PO⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO?平面PAC,
∴PO⊥平面ABC.
∵AB⊥BC,AB=BC=PA=PC=2,
∴AC=2$\sqrt{2}$,BO=AO=$\frac{1}{2}AC$=$\sqrt{2}$,∴PO=$\sqrt{P{A}^{2}-O{A}^{2}}$=$\sqrt{2}$.
∴VP-MNB=$\frac{1}{3}{S}_{△BMN}•PO$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{2}×\sqrt{2}$=$\frac{2}{3}$.
故選D.

點評 本題考查了線面垂直的判定,棱錐的體積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{n}$(xi-$\overline{x}$)2$\sum_{i=1}^{n}$(wi-$\overline{w}$)2$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{n}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.656.36.8289.81.61469108.8
表中:wi=$\sqrt{{x}_{i}}$,$\overrightarrow{w}$=$\frac{1}{8}$$\sum_{i=1}^{n}$wi
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$,哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值時多少?
(ii)當(dāng)年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2)…(un,vn),其回歸線$\widehat{v}$=$\widehat{α}$+$\widehat{β}$$\overline{u}$的斜率和截距的最小二乘估計分別為:$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示的幾何體為一簡單組合體,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(Ⅰ)求證:平面PAB⊥平面QBC;
(Ⅱ)求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-a(x<1)}\\{ln(x+a)(x≥1)}\end{array}\right.$,其中a>-1.若f(x)在R上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.[e+1,+∞)B.(e+1,+∞)C.(e-1,+∞)D.[e-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用反證法證明“a,b,c三個實數(shù)中最多只有一個是正數(shù)”,下列假設(shè)中正確的是( 。
A.有兩個數(shù)是正數(shù)B.至少有兩個數(shù)是正數(shù)
C.至少有兩個數(shù)是負(fù)數(shù)D.這三個數(shù)都是正數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,BC=7,cosA=$\frac{1}{5}$,sinC=$\frac{2\sqrt{6}}{7}$,若動點P滿足$\overrightarrow{AP}$=$\frac{2λ}{3}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),則點P的軌跡與直線AB、AC所圍成的封閉區(qū)域的面積為( 。
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.等差數(shù)列{an}的前n項和為Sn,已知S10=0,S15=25,則使(n+1)Sn取最小值的n等于6或7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出一個正五棱柱,用3種顏色給其10個頂點染色,要求各側(cè)棱的兩個端點不同色,共有7776種染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在五個數(shù)字5,6,7,8,9,中,若隨機取出三個數(shù)字,剩下兩個數(shù)字都是奇數(shù)的概率是( 。
A.$\frac{3}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{7}{10}$

查看答案和解析>>

同步練習(xí)冊答案