【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合計 | 30 | 80 | 110 |
(2)計算得到K2= ≈7.487<10.828.因此按99.9%的可靠性要求,不能認(rèn)為“成績與班級有關(guān)系”
(3)抽到9號或10號的概率為.
【解析】
試題分析:
思路分析:此類問題(1)(2)直接套用公式,經(jīng)過計算“卡方”,與數(shù)表對比,作出結(jié)論。(3)是典型的古典概型概率的計算問題,確定兩個“事件”數(shù),確定其比值。
解:(1) 4分
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合計 | 30 | 80 | 110 |
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2= ≈7.487<10.828.因此按99.9%的
可靠性要求,不能認(rèn)為“成績與班級有關(guān)系” 8分
(3)設(shè)“抽到9或10號”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36個.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7個.所以P(A)= ,即抽到9號或10號的概率為. 12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】化為推出一款6寸大屏手機(jī),現(xiàn)對500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間 | |||||
頻數(shù) | 20 | 40 | 80 | 50 | 10 |
男性用戶:
分值區(qū)間 | |||||
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)如果評分不低于70分,就表示該用戶對手機(jī)“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列列聯(lián)表,并回答是否有的把握認(rèn)為性別對手機(jī)的“認(rèn)可”有關(guān):
女性用戶 | 男性用戶 | 合計 | |
“認(rèn)可”手機(jī) | |||
“不認(rèn)可”手機(jī) | |||
合計 |
附:
0.05 | 0.01 | |
3.841 | 6.635 |
(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取2名用戶,求2名用戶中評分小于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, .設(shè) (t為實數(shù)).
(Ⅰ)若,求當(dāng)取最小值時實數(shù)t的值;
(Ⅱ)若⊥,問:是否存在實數(shù)t,使得向量-和向量的夾角為,若存在,請求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,函數(shù)與的圖象有三個不同的交點,求實數(shù)的范圍;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-a|.
(I)若f(x)的最小值為2,求a的值;
(II)若f(x)≤|2x-4|的解集包含[-2,-1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù),).
(1)若僅有一個極值點,求的取值范圍;
(2)證明:當(dāng)時,有兩個零點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(UB);
(2)若A∪C=C,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com