【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范圍.

【答案】(1)A∩(CUB)={x|﹣1≤x<2};(2)a<﹣1.

【解析】試題分析:(1)先求得A={x|﹣1≤x≤3}和CUB={x|x<2,或x≥5},再求A∩(UB);

(2)由A∪C=C得AC,比較兩集合的端點值可得a<﹣1。

試題解析:(1)由條件得A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},

∵ B={x|2≤x<5},U=R,

∴CUB={x|x<2,或x≥5},

∴A∩(CUB)={x|﹣1≤x<2};

(2)由A∪C=C,得AC,

又C={x|x>a},A={x|﹣1≤x≤3},

∴a<﹣1

∴實數(shù)a的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),現(xiàn)以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)在曲線上是否存在一點,使點到直線的距離最小?若存在,求出距離的最小值及點的直角坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

(1)請完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為成績與班級有關(guān)系;

(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).

(1)求函數(shù)f(x)的定義域;

(2)判斷函數(shù)f(x)的奇偶性并給出證明;

(3)若x時,函數(shù)f(x)的值域是[0,1],求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

)求的單調(diào)區(qū)間和最小值;

)討論的大小關(guān)系;

)求的取值范圍,使得對任意成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中, , △是斜邊的等腰直角三角形, 以下結(jié)論中: ① 異面直線所成的角為;② 直線平面;③ 面;④ 點到平面的距離是. 其中正確結(jié)論的序號是 ____________________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距離

(2)在線段上是否存在一點,使?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時,函數(shù)處的切線互相垂直,求的值;

2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;

(3)是否存在正實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案