已知|
a
|=3,|
b
|=4,且滿足(2
a
-
b
)(
a
+2
b
)≥4,求
a
b
的夾角β的范圍.
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:由向量數(shù)量積的定義,再由向量夾角的取值范圍求解.
解答: 解:∵(2
a
-
b
)(
a
+2
b
)≥4,
∴2|
a
|2+4
a
b
-
a
b
-2|
b
|2≥4,
∵|
a
|=3,|
b
|=4,
a
b
≥6,
∵cosβ=
a
b
|
a
||
b
|
6
3×4
=
1
2
,
∵β∈[0,π]
∴β∈[0,
π
3
]
點(diǎn)評(píng):本題考察了向量數(shù)量積的運(yùn)算,運(yùn)用求夾角問題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)A(-2,3),且點(diǎn)B(1,-1)到該直線l的距離為3,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)f(x)=
4-8|x-
3
2
|
;1≤x≤2
1
2
f(
x
2
)
;x>2
,則函數(shù)g(x)=xf(x)-6在區(qū)間[1,8]內(nèi)的所有零點(diǎn)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若3sinα+cosα=0,則
1
cos2α+2sinαcosα
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩),經(jīng)預(yù)測(cè),一個(gè)橋墩的費(fèi)用為32萬元,相鄰兩個(gè)橋墩之間的距離均為x,且相鄰兩個(gè)橋墩之間的橋面工程費(fèi)用為(1+x)x萬元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其它因素,記工程總費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=80米時(shí),需要新建多少個(gè)橋墩才能使y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(2α-β)=
3
5
,sinβ=-
12
13
,且α∈(
π
2
,π),β∈(-
π
2
,0),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,a2=
1
2
,并且{an}滿足an(an-1+an+1)=2an+1an-1(n≥2)則數(shù)列{an}的第2014項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ADE-BCF中,面ABFE和面ABCD都是正方形且互相垂直,M為AB的中點(diǎn),O為DF的中點(diǎn),運(yùn)動(dòng)向量方法證明:
(1)OM∥平面BCF;
(2)平面MDF⊥平面EFCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案