3.已知數(shù)列{an}中,a1=1,a3=9,且an=an-1+λn-1(n≥2).
( I)求λ的值及數(shù)列{an}的通項(xiàng)公式;
( II)設(shè)${b_n}={(-1)^n}•({a_n}+n)$,且數(shù)列{bn}的前n項(xiàng)和為Sn,求S2n

分析 (I)a1=1,a3=9,且an=an-1+λn-1(n≥2),可得a2=2λ,a3=5λ-1=9,解得λ.可得an-an-1=2n-1(n≥2).利用“累加求和”方法即可得出.
(II)${b_n}={(-1)^n}•({a_n}+n)$=(-1)n(n2+n),可得b2n-1+b2n=-[(2n-1)2+(2n-1)]+[(2n)2+2n]=4n.即可得出S2n

解答 解:(I)∵a1=1,a3=9,且an=an-1+λn-1(n≥2),∴a2=2λ,a3=5λ-1=9,解得λ=2.
∴an-an-1=2n-1(n≥2).
∴an=(2n-1)+(2n-3)+…+3+1=$\frac{n(2n-1+1)}{2}$=n2
(II)${b_n}={(-1)^n}•({a_n}+n)$=(-1)n(n2+n),
b2n-1+b2n=-[(2n-1)2+(2n-1)]+[(2n)2+2n]=4n.
S2n=4×$\frac{n(n+1)}{2}$=2n2+2n.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系、分組求和,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{a^x},\;0<x≤1\;\\{log_a}x\;,x>1\end{array}\right.$(a>0且a≠1),若f(3a2)>f(1-2a),則a的取值范圍是( 。
A.$0<a<\frac{1}{2}$B.$\frac{1}{3}<a<\frac{1}{2}$C.$0<a<\frac{1}{3}$D.a>1或$0<a<\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足$\overrightarrow{B{F}_{1}}$=$\overrightarrow{{F}_{1}{F}_{2}}$,且$\overrightarrow{AB}$•$\overrightarrow{A{F}_{2}}$=0.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若D是經(jīng)過A、B、F2三點(diǎn)的圓上的點(diǎn),且D到直線l:x-$\sqrt{3}$y-3=0的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓C的方程;
(Ⅲ)在(Ⅱ)的條件下,設(shè)P、Q是橢圓C上異于A的兩點(diǎn),且以PQ為直徑的圓過點(diǎn)A,問直線PQ是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}x-y≤4\\ x+y≤0\\ x≥0\end{array}\right.$,若點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M(-1,-1),那么$\overrightarrow{OM}•\overrightarrow{OP}$的最大值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x2+m與函數(shù)$g(x)=-ln\frac{1}{x}-3x$$(x∈[\frac{1}{2},2])$的圖象上至少存在一對(duì)關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$[\frac{5}{4}+ln2,2]$B.$[2-ln2,\frac{5}{4}+ln2]$C.$[\frac{5}{4}+ln2,2+ln2]$D.[2-ln2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2.
(Ⅰ)求證:平面PBC⊥平面PAB;
(Ⅱ)若二面角B-PC-D的余弦值為-$\frac{\sqrt{2}}{3}$,求PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若正整數(shù)n除以正整數(shù)m后的余數(shù)為N,則記為n≡N(bmodm),例如10≡4(bmod6),下面程序框圖的算法源于我國古代聞名中外的“中國剩余定理”,執(zhí)行該程序框圖,則輸出的n等于(  )
A.11B.13C.14D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖:ABCD是菱形,SAD是以AD為底邊等腰三角形,$SA=SD=\sqrt{39}$,$AD=2\sqrt{3}$,且二面角S-AD-B大小為120°,∠DAB=60°.
(1)求證:AD⊥SB;
(2)求SC與SAD平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,設(shè)內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且sin(A-$\frac{π}{6}$)-cos(A+$\frac{5π}{3}$)=$\frac{\sqrt{2}}{2}$.
(1)求角A的大小;
(2)若a=$\sqrt{5}$,sin2B+cos2C=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案