9.已知命題p:?x>0,x+$\frac{4}{x}$>4,則¬p為( 。
A.¬p:?x≤0,x$+\frac{4}{x}$≤4B.¬p:?x≤0,x$+\frac{4}{x}$≤4C.¬p:?x>0,x$+\frac{4}{x}$≤4D.¬p:?x>0,x$+\frac{4}{x}$=4

分析 命題p是全稱命題,其否定應(yīng)為特稱命題,注意量詞和不等號(hào)的變化.

解答 解:命題p:?x>0,x+$\frac{4}{x}$>4為全稱命題,則¬p:?x>0,x$+\frac{4}{x}$≤4,
故選:C

點(diǎn)評(píng) 本題考查命題的否定,全稱命題和特稱命題,屬基本知識(shí)的考查.注意在寫命題的否定時(shí)量詞的變化,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=1nx-$\frac{a(x-1)}{x+1}$.(a∈R)
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}<\frac{1nx}{x-1}$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow$,則m=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)$g(x)=({-{x^4}-{x^2}})+\frac{1}{{{e^{|x|}}-1}}$,若不等式g(x2)>g(ax)對一切x∈[-1,0)∪(0,1]恒成立,則a的取值范圍是( 。
A.(-∞,-1)∪(1,+∞)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若一直線的參數(shù)方程為$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),則此直線的傾斜角為( 。
A.60°B.120°C.300°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=5,nSn+1-(n+1)Sn=n2+n.
(Ⅰ)求證:數(shù)列{$\frac{{S}_{n}}{n}$}為等差數(shù)列;
(Ⅱ)若bn=$\frac{1}{(2n+1){a}_{n}}$,判斷{bn}的前n項(xiàng)和Tn與$\frac{1}{6}$的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),則函數(shù)$y=\frac{f(x+1)}{{\sqrt{-{x^2}-3x+4}}}$的定義域是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=x-$\frac{1}{x}$-2m•lnx(m∈R)
(Ⅰ)當(dāng)m=-1時(shí),求函數(shù)f(x)的零點(diǎn);
(Ⅱ)當(dāng)m>-1時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)在(Ⅱ)條件下,若f(x)有兩個(gè)極值點(diǎn)是x1,x2,過點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線 的斜率為k,問:是否存在m,使k=2-2m?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知四棱錐A-BCDE,其中AB=BC=AC=BE=1,CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:面ADE⊥面ACD;
(3)求四棱錐A-BCDE的體積.

查看答案和解析>>

同步練習(xí)冊答案