19.已知函數(shù)f(x)=1nx-$\frac{a(x-1)}{x+1}$.(a∈R)
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}<\frac{1nx}{x-1}$恒成立,求a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算判別式△,通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)問題轉(zhuǎn)化為$\frac{2}{{1-{x^2}}}(1nx-a\frac{x-1}{x+1})<0$,即$\frac{2}{{1-{x^2}}}f(x)<0$,結(jié)合函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:(Ⅰ)定義域是(0,+∞),
$f'(x)=\frac{1}{x}-\frac{2a}{{{{(x+1)}^2}}}$=$\frac{{{x^2}+2(1-a)x+1}}{{x{{(x+1)}^2}}}$.
令g(x)=x2+2(1-a)x+1.
當(dāng)△=4(1-a)2-4≤0,
即0≤a≤2時(shí),g(x)≥0恒成立,即f'(x)≥0,
所以f(x)的單調(diào)增區(qū)間為(0,+∞);
當(dāng)△=4(1-a)2-4>0時(shí),即a<0或a>2時(shí),方程g(x)=0有兩個(gè)不等的實(shí)根,
${x_1}=a-1-\sqrt{{{(a-1)}^2}-1}$,${x_2}=a-1+\sqrt{{{(a-1)}^2}-1}$.
若a<0,由x1+x2=2(a-1)<0,x1x2=1>0得,x1<0,x2<0,
所以g(x)>0在(0,+∞)成立,
即f'(x)>0,所以f(x)的單調(diào)增區(qū)間為(0,+∞);
若a>2,由x1+x2=2(a-1)>0,x1x2=1>0得,x1>0,x2>0,
由g(x)>0得x的范圍是(0,x1),(x2,+∞),由g(x)<0得x的范圍(x1,x2),
即f(x)的單調(diào)遞增區(qū)間為(0,x1),(x2,+∞),f(x)的單調(diào)遞減區(qū)間為(x1,x2).
綜上所述,當(dāng)a>2時(shí),f(x)的單調(diào)遞增區(qū)間為$(0,a-1-\sqrt{{{(a-1)}^2}-1})$,$(a-1+\sqrt{{{(a-1)}^2}-1},+∞)$,
f(x)的單調(diào)遞減區(qū)間為$(a-1-\sqrt{{{(a-1)}^2}-1},a-1+\sqrt{{{(a-1)}^2}-1})$;
當(dāng)a≤2時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞),無遞減區(qū)間.
(Ⅱ)由$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}<\frac{1nx}{x-1}$,得$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}-\frac{1nx}{x-1}<0$,
即$\frac{-21nx}{{{x^2}-1}}+\frac{2a(x-1)}{{{{(x+1)}^2}(x-1)}}<0$,即$\frac{2}{{1-{x^2}}}(1nx-a\frac{x-1}{x+1})<0$,即$\frac{2}{{1-{x^2}}}f(x)<0$.
由(Ⅰ)可知當(dāng)a≤2時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+∞),又f(1)=0,
所以當(dāng)x∈(0,1)時(shí),f(x)<0,當(dāng)x∈(1,+∞)時(shí),f(x)>0;
又當(dāng)x∈(0,1)時(shí),$\frac{2}{{1-{x^2}}}>0$,當(dāng)x∈(1,+∞)時(shí),$\frac{2}{{1-{x^2}}}<0$;
所以$\frac{2}{{1-{x^2}}}f(x)<0$,即原不等式成立.
由(Ⅰ)可知當(dāng)a>2時(shí),f(x)在(0,x1),(x2,+∞)單調(diào)遞增,在(x1,x2)單調(diào)遞減,
且x1x2=1,得x1<1<x2,f(x2)<f(1)=0,
而$\frac{2}{1-x_2^2}<0$,所以$\frac{2}{1-x_2^2}f({x_2})>0$與條件矛盾.
綜上所述,a的取值范圍是(-∞,2].

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若關(guān)于x的不等式|x-2|+|x-a|≥a在R上恒成立,則a的最大值是( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某大型超市擬對(duì)店慶當(dāng)天購物滿288元的顧客進(jìn)行回饋獎(jiǎng)勵(lì).規(guī)定:顧客轉(zhuǎn)動(dòng)十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖),待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),若指針指向扇形區(qū)域,則顧客可領(lǐng)取此區(qū)域?qū)?yīng)面額(單位:元)的超市代金券.假設(shè)轉(zhuǎn)盤每次轉(zhuǎn)動(dòng)的結(jié)果互不影響.
(Ⅰ)若x0≠60,求顧客轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得60元代金券的概率;
(Ⅱ)某顧客可以連續(xù)轉(zhuǎn)動(dòng)兩次轉(zhuǎn)盤并獲得相應(yīng)獎(jiǎng)勵(lì),當(dāng)x0=20時(shí),求該顧客第一次獲得代金券的面額不低于第二次獲得代金券的面額的概率;
(Ⅲ)記顧客每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤獲得代金券的面額為X,當(dāng)x0取何值時(shí),X的方差最小?
(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,已知二面角α-l-β的平面角為θ,PA⊥α,PB⊥β,A、B為垂足,且PA=4,PB=5,設(shè)A、B到棱l的距離分別為x、y,當(dāng)θ變化時(shí),點(diǎn)(x,y)的軌跡是下列圖形中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸、160噸和200噸,如果A產(chǎn)品的利潤為300元/噸,B產(chǎn)品的利潤為200元/噸,則該顏料公司一天之內(nèi)可獲得的最大利潤為14000元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和Sn=10n-n2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最大值;
(3)設(shè)bn=|an|,求數(shù)列{bn}的前10項(xiàng)和T10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=x2-x+1,g(x)=kx,則“|k|≤1”是“f (x)≥g(x) 在R上恒成立”的( 。
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a>2,f(x)=|2x-a|+|x-1|.
(Ⅰ)求函數(shù)f(x)最小值;
(Ⅱ)關(guān)于x的不等式f(x)≤2-|x-1|有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:?x>0,x+$\frac{4}{x}$>4,則¬p為( 。
A.¬p:?x≤0,x$+\frac{4}{x}$≤4B.¬p:?x≤0,x$+\frac{4}{x}$≤4C.¬p:?x>0,x$+\frac{4}{x}$≤4D.¬p:?x>0,x$+\frac{4}{x}$=4

查看答案和解析>>

同步練習(xí)冊(cè)答案