分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進行求最值即可.
解答 解:由z=x-3y得y=$\frac{1}{3}$x-$\frac{1}{3}$z,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{3}$x-$\frac{1}{3}$z,
由圖象可知當(dāng)直線y=經(jīng)過點C時,直線y=$\frac{1}{3}$x-$\frac{1}{3}$z的截距最小,
此時z最大,
由$\left\{\begin{array}{l}{3x-y+2=0}\\{x-2y-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即C(-1,-1).
代入目標(biāo)函數(shù)z=x-3y,
得z=-1-3×(-1)=2,
故答案為:2.
點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,6) | B. | (-1,6) | C. | (-$\frac{8}{3}$,-1] | D. | (-$\frac{8}{3}$,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{x}<\frac{1}{y}$ | B. | log2(x-y)>0 | C. | x3<y3 | D. | ${(\frac{1}{2})^x}<{(\frac{1}{2})^y}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com