已知函數(shù)均為正常數(shù)),設函數(shù)處有極值.
(1)若對任意的,不等式總成立,求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍.

(1);(2).

解析試題分析:本題主要考查導數(shù)的應用、不等式、三角函數(shù)等基礎知識,考查思維能力、運算能力、分析問題與解決問題的能力,考查函數(shù)思想、轉化思想等數(shù)學思想方法.第一問,對求導,因為有極值,所以的根,列出表達式,求出,不等式恒成立等價于恒成立,所以下面的主要任務是求的最大值,對求導,利用三角公式化簡,求的最值,判斷的正負,從而判斷的單調性,求出最大值;第二問,由單調遞增,所以解出的取值范圍,由已知上單調遞增,所以得出,利用子集關系列出不等式組,解出.
試題解析:∵,∴,
由題意,得,,解得.     2分
(1)不等式等價于對于一切恒成立.      4分

     5分
,∴,∴,∴
,從而上是減函數(shù).
,于是,故的取值范圍是.     6分
(2),由,得,即
.     7分
∵函數(shù)在區(qū)間上單調遞增,
,
則有,,     9分
,
∴只有時,適合題意,故的取值范圍為.     12分
考點:1.導數(shù)的運算;2.兩角和的正弦公式;3.三角函數(shù)的最值;4.恒成立問題;5.利用導數(shù)判斷函數(shù)的單調性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其對應的圖像為曲線C;若曲線C過,且在點處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調區(qū)間;
(Ⅱ)若曲線有三個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)求函數(shù)上的最小值;
(2)對一切恒成立,求實數(shù)的取值范圍;
(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在上的函數(shù),其中為常數(shù).
(1)當是函數(shù)的一個極值點,求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;
(3)當時,若,在處取得最大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調區(qū)間;
(2)當函數(shù)自變量的取值區(qū)間與對應函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:都有。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(I)討論函數(shù)的單調性;
(Ⅱ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式其中為常數(shù).己知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得利潤最大.

查看答案和解析>>

同步練習冊答案