【題目】已知平行四邊形ABCD的三個(gè)頂點(diǎn)的坐標(biāo)為,,.
在中求邊AC的高線所在直線的一般方程;
求平行四邊形ABCD的對(duì)角線BD的長(zhǎng)度;
求平行四邊形ABCD的面積.
【答案】(1);(3)
【解析】
先由A、C兩點(diǎn)坐標(biāo),得出直線AC斜率,求出邊AC的高線的斜率,再由B點(diǎn)坐標(biāo),即可得出結(jié)果;
(2)設(shè)AC的中點(diǎn)為M,得到M點(diǎn)坐標(biāo),再設(shè),由M為BD中點(diǎn),可列方程組求出D點(diǎn)坐標(biāo),進(jìn)而可求出結(jié)果;
(3)先由B、C坐標(biāo)得出直線BC的方程,以及BC長(zhǎng)度,再由點(diǎn)到直線距離公式,求出點(diǎn)A到直線BC的距離,即可求解.
,邊AC的高線的斜率,
邊AC的高線所在的直線方程為,即;
設(shè)AC的中點(diǎn)為M,則,設(shè),則,解得,點(diǎn),
;
易知直線BC方程為:,,
則點(diǎn)到BC的距離為,
平行四邊形ABCD的面積為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大;
(3)設(shè)棱的中點(diǎn)為,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,橢圓的長(zhǎng)軸長(zhǎng)為8,離心率為.
求橢圓方程;
橢圓內(nèi)接四邊形ABCD的對(duì)角線交于原點(diǎn),且,求四邊形ABCD周長(zhǎng)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和滿足,,,.
(1)證明:是等比數(shù)列,是等差數(shù)列;
(2)求和的通項(xiàng)公式;
(3)令,求數(shù)列的前項(xiàng)和的通項(xiàng)公式,并求數(shù)列的最大值、最小值,并指出分別是第幾項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體中,E是棱的中點(diǎn),F是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面,給出下列命題:
點(diǎn)F的軌跡是一條線段;與不可能平行;與BE是異面直線;平面不可能與平面平行.
其中正確的個(gè)數(shù)是
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù))
判斷函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
若, ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年冬季青奧會(huì)即將在瑞士盛大開(kāi)幕,為了在射擊比賽中取得優(yōu)異成績(jī),某國(guó)擬從甲、乙兩位選手中派出一位隨代表團(tuán)參賽,現(xiàn)兩人進(jìn)行了5次射擊,射擊成績(jī)?nèi)缦卤恚▎挝唬悍郑,則應(yīng)派出選手及其標(biāo)準(zhǔn)差為( )
選手 次數(shù) | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 7.4 | 8.1 | 8.6 | 8.0 | 7.9 |
乙 | 7.8 | 8.4 | 7.6 | 8.1 | 8.1 |
A.甲,0.148B.乙,0.076C.甲,D.乙,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、分別為雙曲線的左右焦點(diǎn),左右頂點(diǎn)為、,是雙曲線上任意一點(diǎn),則分別以線段、為直徑的兩圓的位置關(guān)系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com