【題目】如圖,已知橢圓,橢圓的長軸長為8,離心率為.
求橢圓方程;
橢圓內(nèi)接四邊形ABCD的對角線交于原點(diǎn),且,求四邊形ABCD周長的最大值與最小值.
【答案】(1); (2)四邊形ABCD的周長的最小值為,最大值為20..
【解析】
(1)由題意可得a=4,運(yùn)用離心率公式可得c,再由a,b,c的關(guān)系可得b,進(jìn)而得到橢圓方程;
(2)由題意的對稱性可得四邊形ABCD為平行四邊形,運(yùn)用向量的數(shù)量積的性質(zhì),可得22,即有四邊形ABCD為菱形,即有AC⊥BD,討論直線AC的斜率為0,可得最大值;不為0,設(shè)出直線AC的方程為y=kx,(k>0),則BD的方程為yx,代入橢圓方程,求得A,D的坐標(biāo),運(yùn)用兩點(diǎn)的距離公式,化簡整理,由二次函數(shù)的最值求法,可得最小值.
由題意可得,即,
由,可得,,
即有橢圓的方程為;
由題意的對稱性可得四邊形ABCD為平行四邊形,
由,可得,
即,
可得,即有四邊形ABCD為菱形,
即有,
設(shè)直線AC的方程為,,則BD的方程為,
代入橢圓方程可得,
可設(shè),
同理可得,
即有
,
令,
即有,
由,
即有,即時,取得最小值,且為;
又當(dāng)AC的斜率為0時,BD為短軸,即有ABCD的周長取得最大值,且為20.
綜上可得四邊形ABCD的周長的最小值為,最大值為20.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且是的導(dǎo)函數(shù),則曲線C:y=x3過點(diǎn)P(a,b)的切線方程為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)畢業(yè)生為自主創(chuàng)業(yè)于2014年8月初向銀行貸款240000元,與銀行約定按“等額本金還款法”分10年進(jìn)行還款,從2014年9月初開始,每個月月初還一次款,貸款月利率為,現(xiàn)因經(jīng)營狀況良好準(zhǔn)備向銀行申請?zhí)崆斑款計劃于2019年8月初將剩余貸款全部一次還清,則該大學(xué)畢業(yè)生按現(xiàn)計劃的所有還款數(shù)額比按原約定所有還款數(shù)額少 元注:“等額本金還款法”是將本金平均分配到每一期進(jìn)行償還,每一期所還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù)另一部分是利息,即貸款本金與已還本金總額的差乘以利率;年按12個月計算
A. 18000B. 18300C. 28300D. 36300
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3sin()+3,x∈R.
(1)用五點(diǎn)法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;(過程可以不寫,只需畫出圖即可)
(2)求函數(shù)的單調(diào)區(qū)間;
(3)寫出如何由函數(shù)y=sinx的圖象得到函數(shù)f(x)=3sin()+3的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月日至月日每天的晝夜溫差與實(shí)驗(yàn)室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計算公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, .
(1)求證:平面平面;
(2)若,試判斷棱上是否存在與點(diǎn)不重合的點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD的三個頂點(diǎn)的坐標(biāo)為,,.
在中求邊AC的高線所在直線的一般方程;
求平行四邊形ABCD的對角線BD的長度;
求平行四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化進(jìn)程日益加快,勞動力日益向城市流動,某市為抽查該市內(nèi)工廠的生產(chǎn)能力,隨機(jī)抽取某個人數(shù)為1000人的工廠,其中有750人為高級工,250人為初級工,擬采用分層抽樣的方法從本廠抽取100名工人,來抽查工人的生產(chǎn)能力,初級工和高級工的抽查結(jié)果分組情況如表1和表2.
表1:
生產(chǎn)能力分組 | |||||
人數(shù) | 4 | 8 | 5 | 3 |
表2:
生產(chǎn)能力分組 | ||||
人數(shù) | 6 | 36 | 18 |
(1)計算,,完成頻率分直方圖:
圖1:初級工人生產(chǎn)能力的頻率分布直方圖 圖2:高級工人生產(chǎn)能力的頻率分布直方圖
(2)初級工和高級工各抽取多少人?
(3)分別估計兩類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人生產(chǎn)能力的平均數(shù).(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com