【題目】如圖,在三棱臺ABC-A1B1C1中,底面ABC是邊長為2的等邊三角形,上、下底面的面積之比為14,側(cè)面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°

1)平面A1C1B∩平面ABC=l,證明:A1C1l;

2)求四棱錐B-A1ACC1的體積.

【答案】(1)見解析(2)

【解析】

1)三棱臺中上底面與下底面是平行的,即平面A1B1C1∥平面ABC,再由面面平行的性質(zhì)定理可以得到;

(2) AB中點O,連接CO,則COAB,由面面垂直的性質(zhì)可得CO⊥平面A1ABB1,由已知求得上底面邊長,然后利用等積法求四棱錐B-A1ACC1的體積.

1)證明:如圖,∵平面A1B1C1∥平面ABC

且平面A1C1B∩平面ABC=l,A1C1B∩平面A1B1C1=A1C1,

A1C1l

2)解:∵底面ABC是等邊三角形,取AB中點O,

連接CO,則COAB,

∵面A1ABB1⊥底面ABC,且面A1ABB1∩底面ABC=AB,

CO⊥平面A1ABB1,連接A1C,

在三棱臺ABC-A1B1C1中,

∵上、下底面的面積之比為14,∴AB=2A1B1,

AB=2,得CO=,A1B1=1,則A1A=A1B1=1,

又∠AA1B=90°,∴,

,

=

AC=2A1C1,得

,

∴四棱錐B-A1ACC1的體積

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的序號是(   。

①函數(shù)fx)在定義域R內(nèi)可導(dǎo),f1)=0”函數(shù)fx)在x1處取極值的充分不必要條件;

②函數(shù)fx)=x3ax[1,2]上單調(diào)遞增,則a4

③在一次射箭比賽中,甲、乙兩名射箭手各射箭一次.設(shè)命題p甲射中十環(huán),命題q乙射中十環(huán),則命題至少有一名射箭手沒有射中十環(huán)可表示為(¬p)∨(¬q);

④若橢圓左、右焦點分別為F1,F2,垂直于x軸的直線交橢圓于A,B兩點,當直線過右焦點時,ABF1的周長取最大值

A.①③④B.②③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1) 解關(guān)于x的不等式;

(2) 若函數(shù)的圖像恒在函數(shù)圖像的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,判斷函數(shù)的單調(diào)性;

(Ⅱ)當時,證明:.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線過點且與直線垂直,直線軸交于點,點與點關(guān)于軸對稱,動點滿足.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)過點的直線與軌跡相交于兩點,設(shè)點,直線的斜率分別為,問是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生的閱讀習慣,某校開展了為期一年的“弘揚傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以a表示.

(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值, 求圖中a的所有可能取值;

(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達人”. 設(shè),現(xiàn)從所有“閱讀達人”里任取3人,求其中乙組的人數(shù)X的分布列和數(shù)學(xué)期望.

(Ⅲ)記甲組閱讀量的方差為. 在甲組中增加一名學(xué)生A得到新的甲組,若A的閱讀量為10,則記新甲組閱讀量的方差為;若A的閱讀量為20,則記新甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上海市旅游節(jié)剛落下帷幕,在旅游節(jié)期間,甲、乙、丙三位市民顧客分別獲得一些景區(qū)門票的折扣消費券,數(shù)量如表1,已知這些景區(qū)原價和折扣價如表2(單位:元).

1

數(shù)量

景區(qū)1

景區(qū)2

景區(qū)3

0

2

2

3

0

1

4

1

0

2

門票

景區(qū)1

景區(qū)2

景區(qū)3

原價

60

90

120

折扣后價

40

60

80

1)按照上述表格的行列次序分別寫出這三位市民獲得的折扣消費券數(shù)量矩陣A和三個景區(qū)的門票折扣后價格矩陣B;

2)利用你所學(xué)的矩陣知識,計算三位市民各獲得多少元折扣?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017高考新課標Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC;

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.

1)求橢圓的標準方程.

2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案