【題目】已知橢圓: 的左焦點(diǎn),若橢圓上存在一點(diǎn),滿足以橢圓短軸為直徑的圓與線段相切于線段的中點(diǎn).
(1)求橢圓的方程;
(2)過坐標(biāo)原點(diǎn)的直線交橢圓: 于、兩點(diǎn),其中點(diǎn)在第一象限,過作軸的垂線,垂足為,連結(jié)并延長交橢圓于,求證: .
【答案】(1);(2)見解析.
【解析】試題分析:
(Ⅰ)連接,由題設(shè)條件能夠推導(dǎo)出,在 中, ,由此能求出橢圓的方程.(Ⅱ)由(Ⅰ)得橢圓,設(shè)直線的方程為,并代入得: ,利用根的判別式、中點(diǎn)坐標(biāo)公式推導(dǎo)出當(dāng),或,或時(shí),直線過橢圓的頂點(diǎn).(Ⅲ)法一:由橢圓的方程為,設(shè),則,直線的方程為,過點(diǎn)且與垂直的直線方程為,由此能夠證明.法二:由(Ⅰ)得橢圓的方程為,設(shè),則,故,由此能夠證明.
試題解析:
解:(Ⅰ)連接為原點(diǎn), 為右焦點(diǎn)),由題意知:橢圓的右焦點(diǎn)為
因?yàn)?/span>是的中位線,且,所以
所以,故
在中,
即,又,解得
所求橢圓的方程為.---------6分
(Ⅱ)法一:由(Ⅰ)得橢圓的方程為
根據(jù)題意可設(shè),則
則直線的方程為…①
過點(diǎn)且與垂直的直線方程為…②
①②并整理得:
又在橢圓上,所以
所以
即①、②兩直線的交點(diǎn)在橢圓上,所以.
法二:由(Ⅰ)得橢圓的方程為
根據(jù)題意可設(shè),則, ,
所以直線
,化簡(jiǎn)得
所以
因?yàn)?/span>,所以,則
所以,則,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域D,如果存在正實(shí)數(shù)m,使得對(duì)任意x∈D,都有f(x+m)>f(x),則稱f(x)為D上的“m型增函數(shù)”.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=|x﹣a|﹣a(a∈R).若f(x)為R上的“20型增函數(shù)”,則實(shí)數(shù)a的取值范圍是( )
A.a>0
B.a<5
C.a<10
D.a<20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O與⊙O′相交于A、B兩點(diǎn),過A引直線CD,EF分別交兩圓于點(diǎn)C、D、E、F,EC與DF的延長線相交于點(diǎn)P,求證:∠P+∠CBD=180°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項(xiàng)和為,且是和的等差中項(xiàng),等差數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如下圖所示,為抑制房?jī)r(jià)過快上漲,政府從8月份開始采取宏觀調(diào)控措施,10月份開始房?jī)r(jià)得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅銷售均價(jià);
(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月的所屬季度,記不同季度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù)及公式: , , ;
回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,點(diǎn)滿足.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形BCDE中,BC∥DE,BA⊥DE,且EA=DA=AB=2CB=2,沿AB將四邊形ABCD折起,使得平面ABCD與平面ABE垂直,M為CE的中點(diǎn).
(1)求證:AM⊥BE;
(2)求三棱錐C﹣BED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于零的等差數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.
(3)設(shè),為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得對(duì)任意的均成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com