2.已知焦點(diǎn)為F的拋物線y2=2px(p>0)上有一點(diǎn)$A({m,2\sqrt{2}})$,以A為圓心,|AF|為半徑的圓被y軸截得的弦長為$2\sqrt{7}$,則m=( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

分析 運(yùn)用點(diǎn)滿足拋物線的方程可得p(由m表示),運(yùn)用拋物線的定義可得|AF|,即圓的半徑,運(yùn)用圓的弦長公式,解方程可得m的值.

解答 解:由$A(m,\;\;2\sqrt{2})$在拋物線y2=2px上,
∴2pm=8,∴$p=\frac{4}{m}$,
∴拋物線的焦點(diǎn)$F({\frac{p}{2},\;\;0})$,即$F({\frac{2}{m},\;\;0})$,準(zhǔn)線方程為x=-$\frac{p}{2}$,
由拋物線的定義可知$|AF|=m+\frac{p}{2}=m+\frac{2}{m}$,
即圓A的半徑$r=m+\frac{2}{m}$.
∵A到y(tǒng)軸的距離d=m,
∴${r^2}-{d^2}={(\sqrt{7})^2}$,
即${({m+\frac{2}{m}})^2}-{m^2}=7$,解得$m=\frac{{2\sqrt{3}}}{3}$,
故選D.

點(diǎn)評(píng) 本題考查拋物線的定義和方程的運(yùn)用,直線和圓相交的弦長公式的運(yùn)用,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z=1+3i$(i為虛數(shù)單位),則復(fù)數(shù)$\frac{z}{1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)(1-x)(2x+1)5=a0+a1x+a2x2+…+a5x6,則a2等于30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$ρcosθ-\sqrt{2}ρsinθ+3=0$.
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)P為曲線C上一點(diǎn),Q為直線l上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)A(2,0),B(3,2),向量$\overrightarrow a=({2,λ})$,若$\overrightarrow a⊥\overrightarrow{AB}$,則$|{\overrightarrow a}|$為(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$2\sqrt{6}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}各項(xiàng)均為正數(shù),a1=$\frac{1}{2}$,對(duì)任意的n∈N*,有an+1=an+$\frac{1}{2016}$an2,若an>1,則n的最小值為2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=lnx-ax2(a∈R).
(1)討論f(x)的零點(diǎn)個(gè)數(shù);
(2)設(shè)函數(shù)h(x)=(1-a)x2-kx-f(x),對(duì)任意的m,n>0(m≠n),存在c>0,使得h′(c)=$\frac{h(m)-h(n)}{m-n}$,求證:$\sqrt{mn}$<c<$\frac{m+n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“mMODn”表示m除以n的余數(shù)),若輸入的m,n分別為325,125,則輸出的m=( 。
A.0B.5C.25D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)x=0.820.5,$y={log_2}\root{10}{512}$,z=sin1.則x、y、z的大小關(guān)系為( 。
A.x<y<zB.y<z<xC.z<x<yD.z<y<x

查看答案和解析>>

同步練習(xí)冊(cè)答案