【題目】已知點為圓的圓心, 是圓上動點,點在圓的半徑上,且有點上的點,滿足

(1)當在圓上運動時,求點的軌跡方程;

(2)若斜率為的直線與圓相切,與(1)中所求點的軌跡教育不同的兩點 是坐標原點,且時,求的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1中線段的垂直平分線,所以所以點的軌跡是以點為焦點,焦距為2,長軸為的橢圓從而可得橢圓方程;(2設直線,直線與圓相切,可得直線方程與橢圓方程聯(lián)立可得: ,可得,再利用數(shù)量積運算性質(zhì)、根與系數(shù)的關(guān)系及其即可解出的范圍.

試題解析:(1)由題意知中線段的垂直平分線,所以

所以點的軌跡是以點為焦點,焦距為2,長軸為的橢圓,

故點的軌跡方程式

2)設直線

直線與圓相切

聯(lián)立

所以為所求.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】近年來,某市實驗中學校領(lǐng)導審時度勢,深化教育教學改革,經(jīng)過師生共同努力,高考成績碩果累累,捷報頻傳,尤其是2017年某著名高校在全國范圍內(nèi)錄取的大學生中就有25名來自該中學.下表為該中學近5年被錄取到該著名高校的學生人數(shù).(記2013年的年份序號為1,2014年的年份序號為2,依此類推……)

年份序號

1

2

3

4

5

錄取人數(shù)

10

13

17

20

25

(1)求關(guān)于的線性回歸方程,并估計2018年該中學被該著名高校錄取的學生人數(shù)(精確到整數(shù));

(2)若在第1年和第4年錄取的大學生中按分層抽樣法抽取6人,再從這6人中任選2人,求這2人中恰好有一位來自第1年的概率.

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1所示,在中, , , , 的平分線,點在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設點的中點.

圖1 圖2

(1)求證: 平面;

(2)在圖2中,若平面,其中為直線與平面的交點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.

1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式;

2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

假設花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的上頂點到右頂點的距離為,左焦點為,過點且斜率為的直線交橢圓于, 兩點.

(Ⅰ)求橢圓的標準方程及的取值范圍;

(Ⅱ)在軸上是否存在定點,使恒為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP,ON交于點AB,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C,點x軸的正半軸上,過點M的直線與拋物線C相交于A,B兩點,O為坐標原點.

1)若,且直線的斜率為1,求以AB為直徑的圓的方程;

2)是否存在定點M,使得不論直線繞點M如何轉(zhuǎn)動, 恒為定值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,且,設命題p:函數(shù)上單調(diào)遞減;命題q:函數(shù) 上為增函數(shù),

1)若“pq”為真,求實數(shù)c的取值范圍

2)若“pq”為假,“pq”為真,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:對任意,不等式恒成立;命題q:存在,使得成立.

(1)p為真命題,求m的取值范圍;

(2),若pq為假,pq為真,求m的取值范圍.

查看答案和解析>>

同步練習冊答案