【題目】已知函數(shù) .
(Ⅰ)當時,求函數(shù)在處的切線方程;
(Ⅱ)當時,求函數(shù)的單調區(qū)間;
(Ⅲ)若函數(shù)有兩個極值點,不等式恒成立,求實數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ)當時,的單調遞增區(qū)間是,當時,的單調遞增區(qū)間是,,單調遞減區(qū)間是;(Ⅲ).
【解析】
試題分析:(Ⅰ)先對函數(shù)求導,求出切線方程得斜率,再求出該點的函數(shù)值,利用點斜式求解;(Ⅱ)利用導函數(shù)的正負判斷原函數(shù)的單調性,再分類討論;(Ⅲ)從函數(shù)在上有兩個極值點,表示,得到新的函數(shù),再求最值.
試題解析:(I)當時,
則
所以切線方程為,
即為
(Ⅱ)
令
當即時,,函數(shù)在上單調遞增;
(2)當且,即時,由,得,
由,得或;
由,得.
綜上,當時,的單調遞增區(qū)間是;
當時,的單調遞增區(qū)間是,;
單調遞減區(qū)間是
(Ⅲ)函數(shù)在上有兩個極值點,由(Ⅱ)可得,
由則,,,
由,可得,,
令,
由,則,,
又,則,即在遞減,
即有,即,
即有實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長為2,過點的直線與橢圓相交于、兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABC﹣A1B1C1是底面邊長為2,高為的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ,設C1P=λC1A1(0<λ<1).
(Ⅰ)證明:PQ∥A1B1;
(Ⅱ)當時,在圖中作出點C在平面ABQP內的正投影F(說明作法及理由),并求四面體CABF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組檢測數(shù)據(jù)(…)如下表所示:
試銷價格 (元) | 4 | 5 | 6 | 7 | 9 | |
產(chǎn)品銷量 (件) | 84 | 83 | 80 | 75 | 68 |
已知變量具有線性負相關關系,且,,現(xiàn)有甲、乙、丙三位同學通過計算求得其回歸直線方程分別為:甲,乙,丙,其中有且僅有一位同學的計算結果是正確的( ).
(1)試判斷誰的計算結果正確?并求出的值;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取2個,為“理想數(shù)據(jù)”的個數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知兩定點、,⊙C的方程為.當⊙C的半徑取最小值時:
(1)求出此時m的值,并寫出⊙C的標準方程;
(2)在x軸上是否存在異于點E的另外一個點F,使得對于⊙C上任意一點P,總有為定值?若存在,求出點F的坐標,若不存在,請說明你的理由;
(3)在第(2)問的條件下,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一圓經(jīng)過點,,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體,則下列說法不正確的是( )
A.若點在直線上運動時,三棱錐的體積不變
B.若點是平面上到點和距離相等的點,則點的軌跡是過點的直線
C.若點在直線上運動時,直線與平面所成角的大小不變
D.若點在直線上運動時,二面角的大小不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場銷售某種品牌的空調器,每周周初購進一定數(shù)量的空調器,商場沒銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元.
(Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量(單位:臺,)的函數(shù)解析式;
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量(單位:臺),整理得下表:
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調器,表示當周的利潤(單位:元),求的分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調查,統(tǒng)計出售價元和銷售量杯之間的一組數(shù)據(jù)如下表所示:
價格 | 5 | 5.5 | 6.5 | 7 |
銷售量 | 12 | 10 | 6 | 4 |
通過分析,發(fā)現(xiàn)銷售量對奶茶的價格具有線性相關關系.
(Ⅰ)求銷售量對奶茶的價格的回歸直線方程;
(Ⅱ)欲使銷售量為杯,則價格應定為多少?
附:線性回歸方程為,其中,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com