17.在△ABC中,a、b、c分別是三內(nèi)角A、B、C對(duì)應(yīng)的三邊,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判斷△ABC的形狀.

分析 (1)由已知及余弦定理可求cosA=$\frac{1}{2}$,結(jié)合范圍A∈(0,π),可求A的值.
(2)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)2sin2$\frac{B}{2}$=cosC,可得sin(B+$\frac{π}{6}$)=1,結(jié)合范圍B∈(0,π),可求
∴B=C=$\frac{π}{3}$,即可判斷三角形的形狀.

解答 (本小題滿分12分)
解:(1)在△ABC中,由余弦定理得b2+c2-a2=2bccosA,又b2+c2=a2+bc,
∴cosA=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.                         …(5分)
(2)∵2sin2$\frac{B}{2}$=cosC,
∴cosB+cosC=1,…(7分)
∴cosB+cos($\frac{2π}{3}$-B)=1,可得:cosB+cos$\frac{2π}{3}$cosB+sin$\frac{2π}{3}$sinB=1,…(9分)
∴$\frac{\sqrt{3}}{2}$sinB+$\frac{1}{2}$cosB=1,可得:sin(B+$\frac{π}{6}$)=1,
∵B∈(0,π),
∴B=$\frac{π}{3}$,C=$\frac{π}{3}$,…(11分)
∴△ABC是等邊三角形.…(12分)

點(diǎn)評(píng) 本題主要考查了余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的形狀,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合M={x|x2-x-2<0},N={x|x≤k},若M?N,則k的取值范圍是( 。
A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a3+a6=a4+5,且a2不大于1,則a8的取值范圍是(  )
A.[9,+∞)B.(-∞,9]C.(9,+∞)D.(-∞,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.四面體ABCD中,AB=2,BC=3,CD=4,DB=5,AC=$\sqrt{13}$,AD=$\sqrt{29}$,則四面體ABCD外接球的表面積是29π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{a}{a-1}$(2x-2-x)(a>0,且a≠1).
(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性,并說明理由;
(2)當(dāng)x∈(-1,1)時(shí),總有f(m-1)+f(m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《九章算術(shù)》是我國(guó)古代第一部數(shù)學(xué)專著,全書收集了246個(gè)問題及其解法,其中一個(gè)問題為“現(xiàn)有一根九節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面四節(jié)容積之和為3升,下面三節(jié)的容積之和為4升,求中間兩節(jié)的容積各為多少?”該問題中第2節(jié),第3節(jié),第8節(jié)竹子的容積之和為( 。
A.$\frac{17}{6}$升B.$\frac{7}{2}$升C.$\frac{113}{66}$升D.$\frac{109}{33}$升

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.P是雙曲線C:$\frac{x^2}{2}-{y^2}$=1右支上一點(diǎn),直線l是雙曲線C的一條漸近線,P在l上的射影為Q,F(xiàn)1是雙曲線C的左焦點(diǎn),則|PF1|+|PQ|的最小值為( 。
A.1B.$2+\frac{{\sqrt{15}}}{5}$C.$4+\frac{{\sqrt{15}}}{5}$D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),出行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一人走了378里路,第一天健步行走,從第二天起因腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地.”問此人最后一天走了( 。
A.6里B.12里C.24里D.36里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若角α和β的終邊關(guān)于直線x+y=0對(duì)稱,且α=-$\frac{π}{3}$,則角β的集合是{ β|β=2kπ-$\frac{π}{6}$,k∈Z}.

查看答案和解析>>

同步練習(xí)冊(cè)答案