8.在等差數(shù)列{an}中,a3+a6=a4+5,且a2不大于1,則a8的取值范圍是( 。
A.[9,+∞)B.(-∞,9]C.(9,+∞)D.(-∞,9)

分析 由等差數(shù)列的性質(zhì)得a3+a6=a4+a5,從而a5=5,又a2≤1,進而d≥$\frac{4}{3}$,由此能求出a8的取值范圍.

解答 解:∵在等差數(shù)列{an}中,a3+a6=a4+5,且a2不大于1,
∴a5=5,又a2≤1,
∴5-3d≤1,∴d≥$\frac{4}{3}$,
∴a8=a5+3d≥5+4=9.
∴a8的取值范圍是[9,+∞).
故選:A.

點評 本題考查等差數(shù)列的第8項的取值范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知半徑為$\sqrt{5}$,圓心在直線l1:x-y+1=0上的圓C與直線l2:$\sqrt{3}$x-y+1-$\sqrt{3}$=0相交于M,N兩點,且|MN|=$\sqrt{17}$
(1)求圓C的標準方程;
(2)當圓心C的橫、縱坐標均為整數(shù)時,若對任意m∈R,直線l3:mx-y+$\sqrt{a}$+1=0與圓C恒有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在等差數(shù)列{an}中,已知a1+a2+a3=9,a2a4=21,數(shù)列{bn}滿足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}}),{S_n}={b_1}+{b_2}+…+{b_n}$,若Sn>2,則n的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在半徑為12mm的圓上,弧長為144mm的弧所對的圓心角的弧度數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},則M∪N=( 。
A.{x|x≤3}B.{x|2<x<3}C.{x|-1≤x≤3}D.R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在三棱柱ABC-A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,點O是線段AB的中點.
(Ⅰ)證明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C=$\sqrt{6}$,求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在兩坐標軸上截距均為m(m∈R)的直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,則m=(  )
A.$\frac{7}{2}$B.7C.-1或7D.-$\frac{1}{2}$或$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,a、b、c分別是三內(nèi)角A、B、C對應的三邊,已知b2+c2=a2+bc
(1)求角A的大;
(2)若2sin2$\frac{B}{2}$=cosC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,且離心率是$\frac{1}{2}$,過坐標原點O的任一直線交橢圓C于M、N兩點,且|NF2|+|MF2|=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C交于不同的兩點A、B,且與圓x2+y2=1相切,
(i)求證:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

同步練習冊答案