【題目】橢圓與雙曲線有相同的焦點(diǎn),,橢圓的一個(gè)短軸端點(diǎn)為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________.
【答案】
【解析】由題意可知,雙曲線的焦點(diǎn)在軸上,設(shè)橢圓的長(zhǎng)軸為,短軸為,雙曲線的實(shí)軸為,虛軸為,橢圓的一個(gè)短軸端點(diǎn)為,直線與雙曲線的一條漸近線平行,,即,平方可得,,由此得到,即,,由,都是正數(shù),,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,的最小值,故答案為.
【易錯(cuò)點(diǎn)晴】本題主要考查橢圓與雙曲線的幾何性質(zhì)以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最。;三相等是,最后一定要驗(yàn)證等號(hào)能否成立(主要注意兩點(diǎn),一是相等時(shí)參數(shù)否在定義域內(nèi),二是多次用或時(shí)等號(hào)能否同時(shí)成立).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)= ,試求f(x)在區(qū)間[﹣2,6]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),=,記數(shù)列的前項(xiàng)和.若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù), ).以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(Ⅰ)設(shè)為曲線上任意一點(diǎn),求的取值范圍;
(Ⅱ)若直線與曲線交于兩點(diǎn), ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆骰子投擲兩次分別得到點(diǎn)數(shù)a,b,則直線ax-by=0與圓(x-2)2+y2=2相交的概率為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( )x﹣log2x,0<a<b<c,f(a)f(b)f(c)<0,實(shí)數(shù)d是函數(shù)f(x)的一個(gè)零點(diǎn).給出下列四個(gè)判斷:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在函數(shù)()的所有切線中,有且僅有一條切線與直線垂直.
(1)求的值和切線的方程;
(2)設(shè)曲線在任一點(diǎn)處的切線傾斜角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤()、().兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為、、.用這兩個(gè)轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無效,重新開始),記轉(zhuǎn)盤()指針?biāo)鶎?duì)的數(shù)為,轉(zhuǎn)盤()指針?biāo)鶎?duì)的數(shù)為,(、),求下列概率:
(1);
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+b)(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=( )2x﹣( )x﹣1,x∈[0,+∞),求g(x)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com